Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Assessment of internal quality of blueberries using hyperspectral transmittance and reflectance images with whole spectra or selected wavelengths
Indexado
WoS WOS:000341554700002
Scopus SCOPUS_ID:84906352503
DOI 10.1016/J.IFSET.2014.02.006
Año 2014
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Hyperspectral imaging has been used in previous studies for assessing firmness and soluble solids content of fresh fruit. To assess the applicability of this technique for automatic sorting and grading of blueberries, we investigated different sensing modes (i.e., reflectance and transmittance), evaluated the effect of fruit orientation on fruit quality prediction, and developed robust prediction models with fewer wavelengths. In this study, a hyperspectral imaging system was used to acquire reflectance and transmittance images from 420 blueberries in three fruit orientations (i.e., stem end, calyx end and equator) for the spectral region of 400-1000 nm. Mean spectra were extracted from the hyperspectral images of each blueberry. Calibration models for soluble solids content (SSC) and firmness index (FI) were developed using partial least squares regression for the reflectance and transmittance spectra as well as their combination. Further, interval partial least squares (iPLS) regression with 10 different intervals of nine wavelengths was used to reduce the spectral dimensionality. Overall, reflectance gave better results (the best correlation for prediction (R-p) of 0.90 for SSC and 0.78 for El) than transmittance (R-p of 0.76 for SSC and 0.64 for FI). For reflectance, SSC and FI predictions for the stem end orientation were better than for the other two orientations, while fruit orientation had little or insignificant effect on transmittance predictions. Combination of reflectance and transmittance spectra did not yield improved prediction results for both SSC and H. On average, the prediction errors for iPLS increased by only 5%, compared to PLS for the whole spectra. The research demonstrated that it is feasible to use hyperspectral imaging technique for prediction of internal quality of blueberries with a few selected wavelengths with results similar to that with whole spectral information. Industrial relevance: Because of the distance traveled from the South to the North hemisphere, it is especially important to perform internal and external quality determination for individual fresh blueberries to ensure their quality upon arrival at the destination. Soluble solids content and firmness are important fruit quality parameters. Hyperspectral imaging has emerged as a new technique for quality and safety inspection of food and agricultural products and could be useful for blueberry quality assessment. However, there are several limitations to be afforded before: technique implementation velocity since this method uses multiple images from contiguous wavelengths (increasing computational costs), fruit light interaction, and fruit orientation effect between others. Specifically, the submitted manuscript presents results in order to demonstrate the hyperspectral imaging technique feasibility with a few selected wavelengths to achieve acceptable results for the prediction of internal quality of blueberries, thus, this would make it possible to implement the technique in the near future for online commercial sorting and grading of blueberries. (C) 2014 Elsevier Ltd. All rights reserved.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Food Science & Technology
Scopus
Chemistry (All)
Industrial And Manufacturing Engineering
Food Science
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Leiva-Valenzuela, Gabriel A. Hombre Pontificia Universidad Católica de Chile - Chile
Michigan State Univ - Estados Unidos
Michigan State University - Estados Unidos
2 Lu, Renfu - Michigan State Univ - Estados Unidos
Michigan State University - Estados Unidos
3 AGUILERA-RADIC, JOSE MIGUEL Hombre Pontificia Universidad Católica de Chile - Chile
3 Miguel Aguiler, Jose - Pontificia Universidad Católica de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 1.39 %
Citas No-identificadas: 98.61 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 1.39 %
Citas No-identificadas: 98.61 %

Financiamiento



Fuente
Comisión Nacional de Investigación Científica y Tecnológica
U.S. Department of Agriculture
Comisión Nacional de Investigación Científica y Tecnológica
National Commission for Science and Technology
Michigan State University
National Commission for Science and Technology (CONICYT) of Chile
USDA/ARS
Agricultural Research Service

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Mr. Gabriel A. Leiva-Valenzuela thanks the National Commission for Science and Technology (CONICYT) of Chile for providing a fellowship, which allowed him to carry out the research in the USDA/ARS postharvest engineering laboratory at Michigan State University in the USA. The authors also acknowledge the helpful experimental aid from Ms. Miranda Sperry and Ms. Stacey Stark, graduate students in Biosystems Engineering at Michigan State University.
Mr. Gabriel A. Leiva-Valenzuela thanks the National Commission for Science and Technology (CONICYT) of Chile for providing a fellowship, which allowed him to carry out the research in the USDA/ARS postharvest engineering laboratory at Michigan State University in the USA. The authors also acknowledge the helpful experimental aid from Ms. Miranda Sperry and Ms. Stacey Stark, graduate students in Biosystems Engineering at Michigan State University.

Muestra la fuente de financiamiento declarada en la publicación.