Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.SUPFLU.2023.106034 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Dichlone (2,3-dichloronaphthalene-1,4-dione) is an important antimicrobial agent for agriculture, which effectiveness could be improved by modifying its structure, while the recovery of high-purity synthesized derivatives from a reaction mixture could be accomplished by extracting them with supercritical carbon dioxide. Two new amine derivatives, 2-chloro-3-((4-chlorobenzyl)amino)naphthalene-1,4-dione (dCl-2B-Cl) and 2-chloro-3-((4-chlorophenethyl)amino)naphthalene-1,4-dione (dCl-3P-Cl), were synthesized from dichlone, and their solubility in supercritical carbon dioxide was measured afterwards at (313, 323 and 333) K and a pressure range from (8−33) MPa. Experimental solubilities spanned from (10.3·10-6 to 22.1·10-6) mol·mol-1 for dCl-2B-Cl, and from (32.7·10-6 to 131·10-6) mol·mol-1 for dCl-3P-Cl. The solubility data of the dichlone family (dichlone, dCl-2B-Cl, dCl-3P-Cl, 2-(benzylamino)-3-chloronaphthalene-1,4-dione (dCl-2B) and 2-chloro-3-(phenethylamino)naphthalene-1,4-dione (dCl-3P)) was compared using three models, i.e., the Chrastil equation, the Molecular Connectivity Indices model, and the Statistical Associating Fluid Theory of Variable Range and Mie Potential equation of state, to identify the quantitative structure-property relationship between them. Solubility had an inverse relation with solute size and polarity, but there were some exceptions that could be explained by performing a stereochemical analysis, which showed that steric effects involved in the folding of dCl-3P and dCl-3P-Cl provided them a better geometry for solvation than dCl-2B and dCl-2B-Cl, respectively, making them more soluble. This demonstrates that the solute geometry is an important factor in the solvation process, and it must be represented accurately to develop better predictive models.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Schulz, Alex C. | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 2 | Zacconi, Flavia | Mujer |
Pontificia Universidad Católica de Chile - Chile
|
| 3 | CABRERA-PALACIOS, ADOLFO LUIS | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 4 | DEL VALLE-LLADSER, JOSE MANUEL | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 5 | ESPINOZA-CATALAN, Luis Espinoza | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 6 | DE LA FUENTE-BADILLA, JUAN CAROL | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Dirección General de Investigación |
| Chilean agency Fondecyt |
| Dirección General de Investigación , Innovación y Emprendimiento of the Universidad Técnica Federico Santa María |
| Dirección General de Investigación, Innovación y Emprendimiento of the Universidad Técnica Federico Santa María |
| Innovacion y Emprendimiento of the Universidad Tecnica Federico Santa Maria |
| Agradecimiento |
|---|
| This research was funded by Chilean agency FONDECYT (Regular Project 115-0822 ) and the Dirección General de Investigación , Innovación y Emprendimiento of the Universidad Técnica Federico Santa María (Proyectos Internos USM 2022 PI_LIR_2022_01 ). The authors also want to thank Ana I. González for setting up the HPLC analysis equipment. Her help is deeply appreciated. They also want to thank Carlos Morales-Díaz for sharing the Wolfram Mathematica code used in his work (see Ref. [34] ), from which was based the algorithm used for the SAFT-VR Mie calculations in this work. |
| This research was funded by Chilean agency FONDECYT (Regular Project 115-0822 ) and the Dirección General de Investigación , Innovación y Emprendimiento of the Universidad Técnica Federico Santa María (Proyectos Internos USM 2022 PI_LIR_2022_01 ). The authors also want to thank Ana I. González for setting up the HPLC analysis equipment. Her help is deeply appreciated. They also want to thank Carlos Morales-Díaz for sharing the Wolfram Mathematica code used in his work (see Ref. [34] ), from which was based the algorithm used for the SAFT-VR Mie calculations in this work. |
| This research was funded by Chilean agency FONDECYT (Regular Project 115-0822) and the Direccion General de Investigacion, Innovacion y Emprendimiento of the Universidad Tecnica Federico Santa Maria (Proyectos Internos USM 2022 PI_LIR_2022_01) . The authors also want to thank Ana I. Gonzalez for setting up the HPLC analysis equipment. Her help is deeply appreciated. They also want to thank Carlos Morales-Diaz for sharing the Wolfram Mathematica code used in his work (see Ref. [34] ) , from which was based the algorithm used for the SAFT-VR Mie calculations in this work. |