Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/978-3-030-35699-6_11 | ||||
| Año | 2019 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper, we propose an end-to-end approach to endow indoor service robots with the ability to avoid collisions using Deep Reinforcement Learning (DRL). The proposed method allows a controller to derive continuous velocity commands for an omnidirectional mobile robot using depth images, laser measurements, and odometry based speed estimations. The controller is parameterized by a deep neural network, and trained using DDPG. To improve the limited perceptual range of most indoor robots, a method to exploit range measurements through sensor integration and feature extraction is developed. Additionally, to alleviate the reality gap problem due to training in simulations, a simple processing pipeline for depth images is proposed. As a case study we consider indoor collision avoidance using the Pepper robot. Through simulated testing we show that our approach is able to learn a proficient collision avoidance policy from scratch. Furthermore, we show empirically the generalization capabilities of the trained policy by testing it in challenging real-world environments. Videos showing the behavior of agents trained using the proposed method can be found at https://youtu.be/ypC39m4BlSk.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Leiva, Francisco | Hombre |
Universidad de Chile - Chile
|
| 2 | Lobos-Tsunekawa, Kenzo | Hombre |
Universidad de Chile - Chile
|
| 3 | RUIZ DEL SOLAR-SAN MARTIN, JAVIER | Hombre |
Universidad de Chile - Chile
Advanced Mining Technology Center - Chile Centro Avanzado de Tecnologia para la Mineria - Chile |
| 4 | Chalup, S | - | |
| 5 | Niemueller, T | - | |
| 6 | Suthakorn, J | - | |
| 7 | Williams, MA | - |
| Fuente |
|---|
| FONDECYT |
| CONICYT-PFCHA |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| CONICYT-PFCHA/Mag |
| CONICYT-PFCHA/Magister Nacional |
| CONICYT-PFCHA/Mag? |
| Mag |