Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Physico-chemical and structural characterization of cellulose nanocrystals obtained by two drying methods: Freeze-drying and spray-drying
Indexado
WoS WOS:000947351700001
Scopus SCOPUS_ID:85148340624
DOI 10.1016/J.FOODHYD.2023.108571
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This study evaluated the physical-chemical properties and structure of cellulose nanocrystals (CNC) produced from pine cellulose pulp, and dried by two different methods: Spray-Drying (SD) or Freeze-Drying (FD). After drying, CNC were characterized in terms of size, z-potential, elemental analysis, conductometric titration, crystallinity and thermogravimetry. Complementary, analysis by force microscopy, dynamic sorption and infrared spectroscopy were carried out. Results showed that different drying methods did not produce significant differences in zeta potential, crystallinity and degradation temperature. However, CNC dried by FD showed smaller size but higher aspect ratio, and higher sulfur content, which would explain the significant higher sorption observed in CNC-FD at relative humidity higher than 80%. Drying method does not influence the formation or modification of cellulose bonds as FTIR suggested. Our study suggests that how CNC is dried will influence the CNC's structure and will modify some of their physico-chemical properties. This information is relevant since it can be used as an input for the scale-up processing of CNC and would define the performance in some of their technological applications.

Revista



Revista ISSN
Food Hydrocolloids 0268-005X

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Chemistry, Applied
Food Science & Technology
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Alarcon-Moyano, Jessica Mujer Universidad de Los Andes, Chile - Chile
2 Acuña, D. Mujer Universidad de Chile - Chile
3 MATIACEVICH, SILVIA BEATRIZ Mujer Universidad de Santiago de Chile - Chile
4 CABALLERO-AVIAL, LEONARDO ANTONIO Hombre Universidad de Santiago de Chile - Chile
5 MELO-LEDERMANN, FRANCISCO JAVIER Hombre Universidad de Santiago de Chile - Chile
6 Quero, Franck Hombre Universidad de Chile - Chile
7 Diaz-Calderon, Paulo Hombre Universidad de Los Andes, Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico
Fondo de Apoyo a la Investigacion
CNC-FD
CNC-SD

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The sorption isotherms obtained from CNC-FD and CNC-SD (Fig. 3) presented sigmoid shape like those described for hydrophilic materials (Belbekhouche et al., 2011). These curves were well fitted with the GAB model (r2 = 0.99, data not shown), which has been reported before for cellulosic materials (Meriçer, Minelli, Giacinti Baschetti, & Lindström, 2017). The GAB model predicts the moisture content of the monolayer (mo) or minimum hydration layer (Lechuga-Ballesteros, Miller, & Zhang, 2002; Porras-Saavedra et al., 2019), which can be considered useful to determine the optimal conditions in terms of relative humidity, in which the matrix material maintains its structure (Bell & y Labuza, 1984; Arslan & y Toğrul, 2006). Our results showed that mo for CNC-FD was lower than for CNC-SD. On the other hand, the parameter C in GAB model has been related with adsorption energies of the monolayer. Thus, a decreasing C value would suggest water molecules are less strongly bound to polar sites available at the material's surface (Enrione, Hill, & Mitchell, 2007). Interestingly, C value in CNC-FD was higher that the C value obtained for CNC-SD, supporting the fact that nanocrystal structure and sulfur content (higher in CNC-FD) would promote higher water sorption. Regarding K values, an increase in this GAB constant towards a value of 1 (0.9 in CNC-SD and 1.0 in CNC-FD) would suggest a smaller difference between the energy associated with the heat of sorption of the multilayer and the heat of condensation of pure water. This agrees with the lower mo value obtained for CNC-FD, but not with the higher value of the C parameter obtained for CNC-FD. This suggests some limitations related with the interpretation and physical meaning of these constants in relation to our experimental data.Authors would like to thank the financial support received from FONDECYT Grant N3220289 and Fondo de Apoyo a la Investigación (FAI UANDES - Postdoctoral Grant).
The sorption isotherms obtained from CNC-FD and CNC-SD (Fig. 3) presented sigmoid shape like those described for hydrophilic materials (Belbekhouche et al., 2011). These curves were well fitted with the GAB model (r2 = 0.99, data not shown), which has been reported before for cellulosic materials (Meriçer, Minelli, Giacinti Baschetti, & Lindström, 2017). The GAB model predicts the moisture content of the monolayer (mo) or minimum hydration layer (Lechuga-Ballesteros, Miller, & Zhang, 2002; Porras-Saavedra et al., 2019), which can be considered useful to determine the optimal conditions in terms of relative humidity, in which the matrix material maintains its structure (Bell & y Labuza, 1984; Arslan & y Toğrul, 2006). Our results showed that mo for CNC-FD was lower than for CNC-SD. On the other hand, the parameter C in GAB model has been related with adsorption energies of the monolayer. Thus, a decreasing C value would suggest water molecules are less strongly bound to polar sites available at the material's surface (Enrione, Hill, & Mitchell, 2007). Interestingly, C value in CNC-FD was higher that the C value obtained for CNC-SD, supporting the fact that nanocrystal structure and sulfur content (higher in CNC-FD) would promote higher water sorption. Regarding K values, an increase in this GAB constant towards a value of 1 (0.9 in CNC-SD and 1.0 in CNC-FD) would suggest a smaller difference between the energy associated with the heat of sorption of the multilayer and the heat of condensation of pure water. This agrees with the lower mo value obtained for CNC-FD, but not with the higher value of the C parameter obtained for CNC-FD. This suggests some limitations related with the interpretation and physical meaning of these constants in relation to our experimental data.Authors would like to thank the financial support received from FONDECYT Grant N3220289 and Fondo de Apoyo a la Investigación (FAI UANDES - Postdoctoral Grant).
Authors would like to thank the financial support received from FONDECYT Grant N3220289 and Fondo de Apoyo a la Investigacion (FAI UANDES-Postdoctoral Grant).

Muestra la fuente de financiamiento declarada en la publicación.