Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Rock lithological classification by hyperspectral, range 3D and color images
Indexado
WoS WOS:000472240800015
Scopus SCOPUS_ID:85064892411
DOI 10.1016/J.CHEMOLAB.2019.04.006
Año 2019
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Mine operations in the future will require automatic rock characterization at many different stages, since it can be used to supervise and optimize various processes in the laboratory as well as at the mine locations for planning and exploitation. Different methods for classifying rocks based on image analysis have been proposed in the past. In this paper, we report the use of hyperspectral sensors in the classification of rock lithology. The lithology provides information about the chemical composition of the rock, and its physical properties. According to our literature review, this is the first time hyperspectral sensors have been employed in rock type classification. Additionally, it is the first time the use of three different technologies in rock type classification has been reported: hyperspectral sensors, laser range and a color camera. We use two hyperspectral sensors, one has sensibility within the visible and near-infrared range of 400-1000 nm, and the second has sensibility within the short wavelength infrared range of 900-2500 nm. The range and high definition color images are used to perform accurate segmentation of the rock samples. Images are tessellated into sub-images in which various features from the three sensor types are extracted. In a first stage, the sub-images are classified by using a support-vector machine (SVM) classifier with the extracted features as inputs. In a second stage, the rock segmentation is used to perform a voting process among all the sub-images of each rock and improve the classification. The method was tested using a database with 13 lithologies from a copper mine in Chile. The results show that lithological classification performance obtained by using hyperspectral images greatly exceeds the performance of the color and range images. The achieved classification performance was 98.62% using sub-image classification and 99.95% using a voting process among sub-images. The number of features was also reduced by using the CMIM (Conditional Mutual Information Maximization) feature selection method, achieving a performance of over 99% with using only 3% of the total number of features.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Statistics & Probability
Chemistry, Analytical
Instruments & Instrumentation
Mathematics, Interdisciplinary Applications
Computer Science, Artificial Intelligence
Automation & Control Systems
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 GALDAMES-GRUNBERG, FRANCISCO JOSE Hombre Universidad de Chile - Chile
Advanced Mining Technology Center - Chile
Centro Avanzado de Tecnologia para la Mineria - Chile
2 PEREZ-FLORES, CLAUDIO ANDRES Hombre Advanced Mining Technology Center - Chile
Universidad de Chile - Chile
Centro Avanzado de Tecnologia para la Mineria - Chile
3 ESTEVEZ-VALENCIA, PABLO ANTONIO Hombre Advanced Mining Technology Center - Chile
Universidad de Chile - Chile
Centro Avanzado de Tecnologia para la Mineria - Chile
4 Inostroza, Felipe Hombre Centro Avanzado de Tecnologia para la Mineria - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Universidad de Chile
Fondo Nacional de Desarrollo Científico y Tecnológico
Advanced Mining Technology Center
Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica
Fondo Nacional de Desarrollo Científico y Tecnológico
Department of Electrical Engineering, Chulalongkorn University
Advanced Mining Technology Center, Universidad de Chile
Department of Electrical Engineering

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by FONDECYT 1161034, Postdoctoral FONDECYT 3140574, the Department of Electrical Engineering, and by the Advanced Mining Technology Center, Universidad de Chile. We want to thank Dr. Jorge R. Vergara for his implementation of the CMIM method; and Sergio Liberman for his software to control the hyper spectral cameras and the camera dolly.
This work was supported by FONDECYT 1161034, Postdoctoral FONDECYT 3140574, the Department of Electrical Engineering, and by the Advanced Mining Technology Center, Universidad de Chile. We want to thank Dr. Jorge R. Vergara for his implementation of the CMIM method; and Sergio Liberman for his software to control the hyperspectral cameras and the camera dolly.

Muestra la fuente de financiamiento declarada en la publicación.