Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1088/1751-8113/46/22/225201 | ||||
| Año | 2013 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper we show that certain three-dimensional isometry algebras, specifically those of type I, II, III and V (according to Bianchi's classification), can be obtained as expansions of the isometries in two dimensions. In particular, we use the so-called S-expansionmethod, which makes use of the finite Abelian semigroups, because it is the most general procedure known until now. Also, it is explicitly shown why it is impossible to obtain the algebras of type IV, VI-IX as expansions from the isometry algebras in two dimensions. All the results are checked with computer programs. This procedure shows that the problem of how to relate, by an expansion, two Lie algebras of different dimensions can be entirely solved. In particular, the procedure can be generalized to higher dimensions, which could be useful for diverse physical applications, as we discuss in our conclusions.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | CAROCA-LISBOA, RICARDO ANTONIO | Hombre |
Universidad Católica de la Santísima Concepción - Chile
|
| 2 | Kondrashuk, Igor | Hombre |
Universidad del Bío Bío - Chile
Departamento De Ciencias Básicas - Chile |
| 3 | MERINO-MONCADA, NELSON RUBEN | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 4 | Nadal, F. | - |
Edificio Inst Invest - España
Politecn Torino - Italia CSIC-UV - Instituto de Física Corpuscular (IFIC) - España Politecnico di Torino - Italia CSIC-UV - Instituto de Física Corpuscular - España |
| Fuente |
|---|
| FONDECYT (Chile) |
| European Social Fund |
| CSIC |
| Pontificia Universidad Catolica de Valparaiso (PUCV) |
| DIUBB grant (UBB, Chile) |
| Agradecimiento |
|---|
| We are grateful to Patricio Salgado for many valuable discussions and for establishing the task. IK was supported by Fondecyt (Chile) grants 1040368, 1050512 and by DIUBB grant (UBB, Chile) 102609. NM and FN wish to thank L Andrianopoli, R D'Auria and M Trigiante for their kind hospitality at Dipartimento di Scienza Applicata e Tecnologia (DISAT) of Politecnico di Torino (POLITO), where part of this work was done. NM is grateful to Pontificia Universidad Catolica de Valparaiso (PUCV) for financial support through a Postdoctoral grant and to Fondecyt (Chile) for financial support through grant 3130445. FN wishes to thank CSIC for a JAE-Predoc grant, co-funded by the European Social Fund. |