Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Bayesian inference in measurement error models from objective priors for the bivariate normal distribution
Indexado
WoS WOS:000487070800003
Scopus SCOPUS_ID:85001838201
DOI 10.1007/S00362-016-0863-7
Año 2019
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In regression analysis, when the covariates are not exactly observed, measurement error models extend the usual regression models toward a more realistic representation of the covariates. It is common in the literature to directly propose prior distributions for the parameters in normal measurement error models. Posterior inference requires Markov chain Monte Carlo (MCMC) computations. However, the regression model can be seen as a reparameterization of the bivariate normal distribution. In this paper, general results for objective Bayesian inference under the bivariate normal distribution were adapted to the regression framework. So, posterior inferences for the structural parameters of a measurement error model under a great variety of priors were obtained in a simple way. The methodology is illustrated by using five common prior distributions showing good performance for all prior distributions considered. MCMC methods are not necessary at all. Model assessment is also discussed. Results from a simulation study and applications to real data sets are reported.

Revista



Revista ISSN
Statistical Papers 0932-5026

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Statistics & Probability
Scopus
Statistics And Probability
Statistics, Probability And Uncertainty
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 de Castro, Mario Hombre UNIV SAO PAULO - Brasil
Universidade de Sao Paulo - USP - Brasil
Universidade de São Paulo - Brasil
2 VIDAL-GARCIA, IGNACIO Hombre Universidad de Talca - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Conselho Nacional de Desenvolvimento Científico e Tecnológico
CNPq, Brazil
Conselho Nacional de Desenvolvimento Científico e Tecnológico

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We would like to thank the Editor-in-Chief and three referees for their valuable comments, which led to an improved version of the paper. This work was partially supported by Proyecto FONDECYT-1130375, Chile. The first author also acknowledges support from CNPq, Brazil.
We would like to thank the Editor-in-Chief and three referees for their valuable comments, which led to an improved version of the paper. This work was partially supported by Proyecto FONDECYT-1130375, Chile. The first author also acknowledges support from CNPq, Brazil.

Muestra la fuente de financiamiento declarada en la publicación.