Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3934/JMD.2013.7.45 | ||||
| Año | 2013 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We show the following geometric generalization of a classical theorem of W. H. Gottschalk and G. A. Hedlund: a skew action induced by a cocycle of (affine) isometries of a Hilbert space over a minimal dynamical system has a continuous invariant section if and only if the cocycle is bounded. Equivalently, the associated twisted cohomological equation has a continuous solution if and only if the cocycle is bounded. We interpret this as a version of the Bruhat-Tits Center Lemma in the space of continuous functions. Our result also holds when the fiber is a proper CAT(0) space. One of the applications concerns matrix cocycles. Using the action of GL(n, R) on the (nonpositively curved) space of positively definite matrices, we show that every bounded linear cocycle over a minimal dynamical system is cohomologous to a cocycle taking values in the orthogonal group.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | CORONEL-SOTO, ALVARO DANIEL | Hombre |
Universidad Nacional Andrés Bello - Chile
|
| 2 | NAVAS-FLORES, ANDRES IGNACIO | Hombre |
Universidad de Santiago de Chile - Chile
Estación Central - Chile |
| 3 | PONCE-ACEVEDO, MARIO ANDRES | Hombre |
Pontificia Universidad Católica de Chile - Chile
|