Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1088/0266-5611/29/7/075009 | ||||
| Año | 2013 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper, we consider two linear plate models, namely the Reissner-Mindlin system (R-M) and the Kirchhoff-Love equation (K-L), which come from linear elasticity. We prove global Carleman inequalities for both models with boundary observations and under a suitable hypothesis on the parameters. We use these estimates to study the inverse problem of recovering a spatially dependent potential from knowledge of Neumann boundary data. We obtain L-2-Lipschitz stability for K-L and H-1-Lipschitz stability for R-M under the assumption that the potentials are equal at the boundary.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | OSSES-ALVARADO, AXEL ESTEBAN | Hombre |
Universidad de Chile - Chile
|
| 2 | Palacios, Benjamin | Hombre |
Universidad de Chile - Chile
|
| Agradecimiento |
|---|
| This work was partially supported by Conicyt Fondecyt 1110290 and Anillo ACPA ACT-1106 grants. We acknowledge E Contreras-Reyes from the Geophysical Department, University of Chile, for introducing us to this type of problem in lithospheric flexure. We want to acknowledge the referee for useful comments for improving this work. |