Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Light curves of stars and exoplanets: Estimating inclination, obliquity and albedo
Indexado
WoS WOS:000323639900050
Scopus SCOPUS_ID:84883107791
DOI 10.1093/MNRAS/STT1191
Año 2013
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Distant stars and planets will remain spatially unresolved for the foreseeable future. It is nonetheless possible to infer aspects of their brightness markings and viewing geometries by analysing disc-integrated rotational and orbital brightness variations. We compute the harmonic light curves, F-l(m)(t), resulting from spherical harmonic maps of intensity or albedo, Y-l(m)(theta, phi), where l and m are the total and longitudinal orders. It has long been known that many non-zero maps have no light curve signature, e.g. odd l > 1 belong to the nullspace of harmonic thermal light curves. We show that the remaining harmonic light curves exhibit a predictable inclination dependence. Notably, odd m > 1 are present in an inclined light curve, but not seen by an equatorial observer. We therefore suggest that the Fourier spectrum of a thermal light curve may be sufficient to determine the orbital inclination of non-transiting short-period planets, the rotational inclination of stars and brown dwarfs, and the obliquity of directly imaged planets. In the best-case scenario of a nearly edge-on geometry, measuring the m = 3 mode of a star's rotational light curve to within a factor of 2 provides an inclination estimate good to +/- 6 degrees, assuming that stars have randomly distributed spots. Alternatively, if stars have brightness maps perfectly symmetric about the equator, their light curves will have no m = 3 power, regardless of orientation. In general, inclination estimates will remain qualitative until detailed hydrodynamic simulations and/or occultation maps can be used as a calibrator. We further derive harmonic reflected light curves for tidally locked planets; these are higher-order versions of the well-known Lambert phase curve. We show that a non-uniform planet may have an apparent albedo 25 per cent lower than its intrinsic albedo, even if it exhibits precisely Lambertian phase variations. Finally, we provide low-order analytic expressions for harmonic light curves that can be used for fitting observed photometry; as a general rule, edge-on solutions cannot simply be scaled by sin i to mimic inclined light curves.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Astronomy & Astrophysics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Cowan, N. B. Hombre NORTHWESTERN UNIV - Estados Unidos
Northwestern University - Estados Unidos
2 Fuentes, Pablo A. Hombre Universidad de Chile - Chile
3 Haggard, Hal M. Hombre Ctr Phys Theor Luminy - Francia
Centre de Physique Theorique - Francia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Science Foundation
Office of the Director
National Science Foundation (NSF) International Research Fellowship Program (IRFP)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We thank the anonymous referee for substantive comments that improved the manuscript. NBC thanks J. H. Steffen and W. M. Farr for useful MATHEMATICA tips, and J. de Wit for thoughtful commentary. HMH gratefully acknowledges support from the National Science Foundation (NSF) International Research Fellowship Program (IRFP) under Grant No. OISE-1159218.

Muestra la fuente de financiamiento declarada en la publicación.