Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Value at risk forecasts by extreme value models in a conditional duration framework
Indexado
WoS WOS:000324083600003
Scopus SCOPUS_ID:84879515963
DOI 10.1016/J.JEMPFIN.2013.05.002
Año 2013
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The analysis of extremes in financial return series is often based on the assumption of independent and identically distributed observations. However, stylized facts such as clustered extremes and serial dependence typically violate the assumption of independence. This has been the main motivation to propose an approach that is able to overcome these difficulties by considering the time between extreme events as a stochastic process. One of the advantages of the method consists in its capability to capture the short-term behavior of extremes without involving an arbitrary stochastic volatility model or a prefiltration of the data, which would certainly affect the estimate. We make use of the proposed model to obtain an improved estimate for the value at risk (VaR). The model is then compared to various competing approaches such as Engle and Marianelli's CAViaR and the GARCH-EVT model. Finally, we present a comparative empirical illustration with transaction data from Bayer AG, a typical blue chip stock from the German stock market index DAX, the DAX index itself and a hypothetical portfolio of international equity indexes already used by other authors. (C) 2013 Elsevier B.V. All rights reserved.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Economics
Business, Finance
Scopus
Economics And Econometrics
Finance
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 HERRERA-LEIVA, RODRIGO Hombre Universidad de Talca - Chile
2 Schipp, Bernhard Hombre Tech Univ Dresden - Alemania
TECHNISCHE UNIVERSITAT DRESDEN - Alemania

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 20.0 %
Citas No-identificadas: 80.0 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 20.0 %
Citas No-identificadas: 80.0 %

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Comisión Nacional de Investigación Científica y Tecnológica
Comisión Nacional de Investigación Científica y Tecnológica

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors would like to thank the referees for their thorough reviews and very useful comments. This work was partly supported by the Guest Researcher Program for Young Researchers CRC 649 Economic Risks . Furthermore, Rodrigo Herrera thanks the Chilean Agency CONICYT for their financial support. FONDECYT No. 11110247 .

Muestra la fuente de financiamiento declarada en la publicación.