Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1239/AAP/1377868540 | ||||
| Año | 2013 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We introduce two stochastic chemostat models consisting of a coupled population-nutrient process reflecting the interaction between the nutrient and the bacteria in the chemostat with finite volume. The nutrient concentration evolves continuously but depends on the population size, while the population size is a birth-and-death process with coefficients depending on time through the nutrient concentration. The nutrient is shared by the bacteria and creates a regulation of the bacterial population size. The latter and the fluctuations due to the random births and deaths of individuals make the population go almost surely to extinction. Therefore, we are interested in the long-time behavior of the bacterial population conditioned to nonextinction. We prove the global existence of the process and its almost-sure extinction. The existence of quasistationary distributions is obtained based on a general fixed-point argument. Moreover, we prove the absolute continuity of the nutrient distribution when conditioned to a fixed number of individuals and the smoothness of the corresponding densities.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Collet, P. | Hombre |
Ecole Polytech - Francia
Centre de Physique Theorique de l' Ecole Polytechnique - Francia |
| 2 | MARTINEZ-AGUILERA, SERVET | Hombre |
Universidad de Chile - Chile
|
| 3 | Meleard, S. | Mujer |
Ecole Polytech - Francia
Centre de Mathématiques Appliquées - Francia |
| 4 | SAN MARTIN-ARISTEGUI, JAIME RICARDO | Hombre |
Universidad de Chile - Chile
|
| Agradecimiento |
|---|
| The authors are grateful to the anonymous referee for his/her comments and references that greatly helped to improve the presentation of this article. The authors acknowledge the support of CMM-BASAL CONICYT, MathAmsud, and ECOS projects. They are also grateful to CMAP and CPHT, Ecole Polytechnique, for their hospitality. |