Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.ESWA.2013.06.017 | ||||
| Año | 2013 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this work, a new evolutionary model is proposed for ranking answers to non-factoid (how-to) questions in community question-answering platforms. The approach combines evolutionary computation techniques and clustering methods to effectively rate best answers from web-based user-generated contents, so as to generate new rankings of answers. Discovered clusters contain semantically related triplets representing question-answers pairs in terms of subject-verb-object, which is hypothesized to improve the ranking of candidate answers. Experiments were conducted using our evolutionary model and concept clustering operating on large-scale data extracted from Yahoo! Answers. Results show the promise of the approach to effectively discovering semantically similar questions and improving the ranking as compared to state-of-the-art methods. (C) 2013 Elsevier Ltd. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | ATKINSON-ABUTRIDY, JOHN ANTHONY | Hombre |
Universidad de Concepción - Chile
|
| 2 | FIGUEROA-AMENABAR, ALEJANDRO GASTON | Hombre |
Yahoo Res - Chile
Yahoo Research Labs - Estados Unidos |
| 3 | Andrade, C. | Hombre |
Universidad de Concepción - Chile
|
| Agradecimiento |
|---|
| This research was partially supported by FONDECYT, Chile under Grant number 1130035: "An Evolutionary Computation Approach to Natural-Language Chunking for Biological Text Mining Applications". |
| This research was partially supported by FONDECYT, Chile under Grant number 1130035 : “An Evolutionary Computation Approach to Natural-Language Chunking for Biological Text Mining Applications”. |