Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1088/0067-0049/209/1/7 | ||||
| Año | 2013 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The vortex coronagraph (VC) is a new generation small inner working angle (IWA) coronagraph currently offered on various 8 m class ground-based telescopes. On these observing platforms, the current level of performance is not limited by the intrinsic properties of actual vortex devices, but by wavefront control residuals and incoherent background (e. g., thermal emission of the sky), or the light diffracted by the imprint of the secondary mirror and support structures on the telescope pupil. In the particular case of unfriendly apertures (mainly large central obscuration) when very high contrast is needed (e. g., direct imaging of older exoplanets with extremely large telescopes or space-based coronagraphs), a simple VC, like most coronagraphs, cannot deliver its nominal performance because of the contamination due to the diffraction from the obscured part of the pupil. Here, we propose a novel yet simple concept that circumvents this problem. We combine a vortex phase mask in the image plane of a high-contrast instrument with a single pupil-based amplitude ring apodizer, tailor-made to exploit the unique convolution properties of the VC at the Lyot-stop plane. We show that such a ring-apodized vortex coronagraph (RAVC) restores the perfect attenuation property of the VC regardless of the size of the central obscuration, and for any (even) topological charge of the vortex. More importantly, the RAVC maintains the IWA and conserves a fairly high throughput, which are signature properties of the VC.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Mawet, Dimitri | Hombre |
ESO - Chile
CALTECH - Estados Unidos European Southern Observatory Santiago - Chile Jet Propulsion Laboratory - Estados Unidos Observatorio Europeo Austral - Chile |
| 2 | Pueyo, Laurent | Hombre |
Space Telescope Sci Inst - Estados Unidos
STScI - Estados Unidos Johns Hopkins University - Estados Unidos Space Telescope Science Institute - Estados Unidos |
| 3 | Carlotti, Alexis | Hombre |
Princeton Univ - Estados Unidos
Princeton University - Estados Unidos |
| 4 | Mennesson, B. | Hombre |
CALTECH - Estados Unidos
Jet Propulsion Laboratory - Estados Unidos |
| 5 | Serabyn, Gene | Hombre |
CALTECH - Estados Unidos
Jet Propulsion Laboratory - Estados Unidos |
| 6 | Wallace, J. Kent | Hombre |
CALTECH - Estados Unidos
Jet Propulsion Laboratory - Estados Unidos |
| Agradecimiento |
|---|
| This work was carried out at the European Southern Observatory (ESO) and at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This material is partially based on work supported by NASA under grant NNX12AG05G issued through the Astrophysics Research and Analysis (APRA) program. |