Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1103/PHYSREVE.88.052916 | ||||
| Año | 2013 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We propose a route to spatiotemporal chaos for one-dimensional stationary patterns, which is a natural extension of the quasiperiodicity route for low-dimensional chaos to extended systems. This route is studied through a universal model of pattern formation. The model exhibits a scenario where stationary patterns become spatiotemporally chaotic through two successive bifurcations. First, the pattern undergoes a subcritical Andronov-Hopf bifurcation leading to an oscillatory pattern. Subsequently, a secondary bifurcation gives rise to an oscillation with an incommensurable frequency with respect to the former one. This last bifurcation is responsible for the spatiotemporally chaotic behavior. The Lyapunov spectrum enables us to identify the complex behavior observed as spatiotemporal chaos, and also from the larger Lyapunov exponents characterize the above instabilities.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | CLERC-GAVILAN, MARCEL GABRIEL | Hombre |
Universidad de Chile - Chile
|
| 2 | Verschueren, Nicolas | Hombre |
Universidad de Chile - Chile
|
| Agradecimiento |
|---|
| The authors thank F. Carbone, C. Falcon, and E. Vidal for fruitful discussions. The authors acknowledge financial support by the ANR-CONICYT 39, "Colors." M.G.C. appreciates the financial support of FONDECYT Project No. 1120320. N.V. thanks CONICYT for support through a Master fellowship under Contract No. 22111114. |