Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Development of a Software Sensor based on a NARMAX-Support Vector Machine Model for Semi-Autogenous Grinding
Indexado
WoS WOS:000330335400010
Scopus SCOPUS_ID:84921998853
DOI 10.1016/J.RIAI.2013.09.008
Año 2014
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



State estimation in complex processes such as the semi-autogenous grinding process (SAG) in copper mining is an important and difficult task due to difficulties for real-time and on-line measuring of some relevant process variables. This paper extends a comparison, initiated in previous work of the same authors, between NARX and NARMAX dynamic models built using Artificial Neural Networks (ANN) and Support Vector Machines (SVM), when acting as estimators of one of the most important state variables for SAG milling operation. To accomplish this comparison we propose a simple and original methodology to develop NARMAX models with SVM. The results show that SVM-NARMAX models outperform SVM-NARX models because they incorporate previous prediction errors in order to improve prediction of the future evolution of the process. Advantages of SVM over those RNA models are also highlighted. NARMAX-SVM has a significantly lower MSE than all other models. In terms of the milling process, it provides a useful tool for estimating important state variables that are not easily available on-line and in real time thus aiding control and monitoring of the process.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Automation & Control Systems
Robotics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 ACUÑA-LEIVA, GONZALO PEDRO Hombre Universidad de Santiago de Chile - Chile
2 CURILEM-SALDIAS, GLORIA MILLARAY Mujer Universidad de La Frontera - Chile
3 CUBILLOS-MONTECINOS, FRANCISCO ANIBAL Hombre Universidad de Santiago de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.