Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1002/NUM.21847 | ||||
| Año | 2014 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We present and analyze an a posteriori error estimator based on mesh refinement for the solution of the hypersingular boundary integral equation governing the Laplacian in three dimensions. The discretization under consideration is a nonconforming domain decomposition method based on the Nitsche technique. Assuming a saturation property, we establish quasireliability and efficiency of the error estimator in comparison with the error in a natural (nonconforming) norm. Numerical experiments with uniform and adaptively refined meshes confirm our theoretical results. (c) 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 947-963, 2014
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Dominguez, Catalina | Mujer |
Univ Norte - Colombia
Universidad del Norte - Colombia |
| 2 | Heuer, N. | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |