Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1093/MNRAS/STU172 | ||||
| Año | 2014 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We present radial velocity measurements of a sample of M5V-M9V stars from our Red-Optical Planet Survey, operating at 0.652-1.025 mu m. Radial velocities for 15 stars, with rms precision down to 2.5 m s(-1) over a week-long time-scale, are achieved using thorium-argon reference spectra. We are sensitive to planets with m(p)sin i >= 1.5 M-circle plus (3 M-circle plus at 2 Sigma) in the classical habitable zone, and our observations currently rule out planets with m(p)sin i > 0.5 M-J at 0.03 au for all our targets. A total of 9 of the 15 targets exhibit rms < 16 m s(-1), which enables us to rule out the presence of planets with m(p)sin i > 10 M-circle plus in 0.03 au orbits. Since the mean rotation velocity is of the order of 8 km s(-1) for an M6V star and 15 km s(-1) for M9V, we avoid observing only slow rotators that would introduce a bias towards low axial inclination (i < 90 degrees) systems, which are unfavourable for planet detection. Our targets with the highest v sin i values exhibit radial velocities significantly above the photon-noise-limited precision, even after accounting for v sin i. We have therefore monitored stellar activity via chromospheric emission from the H alpha and Ca ii infrared triplet lines. A clear trend of log(10)(L-H alpha/L-bol) with radial velocity rms is seen, implying that significant starspot activity is responsible for the observed radial velocity precision floor. The implication that most late M dwarfs are significantly spotted, and hence exhibit time varying line distortions, indicates that observations to detect orbiting planets need strategies to reliably mitigate against the effects of activity-induced radial velocity variations.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Barnes, J. R. | Hombre |
Univ Hertfordshire - Reino Unido
University of Hertfordshire - Reino Unido |
| 2 | JENKINS, JAMES STEWART | Hombre |
Universidad de Chile - Chile
Centro de Excelencia en Astrofísica y Tecnologías Afines - Chile |
| 3 | Jones, Hugh R. A. | Hombre |
Univ Hertfordshire - Reino Unido
University of Hertfordshire - Reino Unido |
| 4 | Jeffers, S. V. | - |
UNIV GOTTINGEN - Alemania
Universität Göttingen - Alemania Georg-August-Universitat Gottingen - Alemania |
| 5 | ROJO-RUBKE, PATRICIO MICHEL | Hombre |
Universidad de Chile - Chile
Centro de Excelencia en Astrofísica y Tecnologías Afines - Chile |
| 6 | ARRIAGADA-PINOCHET, PAMELA | Mujer |
Pontificia Universidad Católica de Chile - Chile
|
| 7 | JORDAN-COLZANI, ANDRES CRISTOBAL | Hombre |
Pontificia Universidad Católica de Chile - Chile
Centro de Excelencia en Astrofísica y Tecnologías Afines - Chile |
| 8 | MINNITI-DEL BARCO, DANTE | Hombre |
Pontificia Universidad Católica de Chile - Chile
Vatican Observ - Vaticano Centro de Excelencia en Astrofísica y Tecnologías Afines - Chile Vatican Observatory - Italia |
| 9 | Tuomi, Mikko | Hombre |
Univ Hertfordshire - Reino Unido
Univ Turku - Finlandia University of Hertfordshire - Reino Unido Tuorla Observatory - Finlandia Tuorlan observatorio - Finlandia |
| 10 | Pinfield, David J. | Hombre |
Univ Hertfordshire - Reino Unido
University of Hertfordshire - Reino Unido |
| 11 | Anglada-Escude, G. | Hombre |
UNIV LONDON - Reino Unido
Queen Mary, University of London - Reino Unido University College London - Reino Unido |
| Fuente |
|---|
| FONDECYT |
| STFC |
| Science and Technology Facilities Council |
| Deutsche Forschungsgemeinschaft (DFG) |
| BASAL CATA |
| BASAL CATA Center for Astrophysics and Associated Technologies |
| Comite Mixto ESO-Gobierno de Chile |
| GEMINI-CONICYT FUND |
| Centro de Astrofisica FONDAP |
| FONDAP Center for Astrophysics |
| European Commissions |
| University of Hertfordshire Research Fellowship |
| Millennium Science Initiative, Chilean Ministry of Economy (Millennium Institute of Astrophysics MAS and Nucleus) |
| MILENIO Milky Way Millennium Nucleus from the Ministry of Economys ICM grant |
| RoPACS, a Marie Curie Initial Training Network |
| Agradecimiento |
|---|
| We would like to thank the anonymous referee for the suggested amendments and for careful reading of the manuscript. JB gratefully acknowledges funding through a University of Hertfordshire Research Fellowship. JSJ acknowledges funding by Fondecyt through grant 3110004 and partial support from Centro de Astrofisica FONDAP 15010003, the GEMINI-CONICYT FUND and from the Comite Mixto ESO-GOBIERNO DE CHILE. SVJ acknowledges research funding by the Deutsche Forschungsgemeinschaft (DFG) under grant SFB 963/1, project A16. DM and PA gratefully acknowledge support by the FONDAP Center for Astrophysics 15010003, the BASAL CATA Center for Astrophysics and Associated Technologies PFB-06 and the MILENIO Milky Way Millennium Nucleus from the Ministry of Economys ICM grant P07-021-F. AJ acknowledges support from FONDECYT project 1130857, BASAL CATA PFB-06 and the Millennium Science Initiative, Chilean Ministry of Economy (Millennium Institute of Astrophysics MAS and Nucleus P10-022-F). PR also acknowledges FONDECYT project 1120299. During the course of this work, DJP and MT were supported by RoPACS, a Marie Curie Initial Training Network funded by the European Commissions Seventh Framework Programme. JB, JSJ, DJP and SVJ have also received travel support from RoPACS during this research. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. |