Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/978-3-319-25017-5_21 | ||||
| Año | 2016 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
AdaBoost is one of the most known Ensemble approaches used in the Machine Learning literature. Several AdaBoost approaches that use Parallel processing, in order to speed up the computation in Large datasets, have been recently proposed. These approaches try to approximate the classic AdaBoost, thus sacrificing its generalization ability. In this work, we use Concurrent Computing in order to improve the Distribution Weight estimation, hence obtaining improvements in the capacity of generalization. We train in parallel in each round several weak hypotheses, and using a weighted ensemble we update the distribution weights of the following boosting rounds. Our results show that in most cases the performance of AdaBoost is improved and that the algorithm converges rapidly. We validate our proposal with 4 well-known real data sets.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | ALLENDE-CID, HECTOR GABRIEL | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
Universidad Técnica Federico Santa María - Chile |
| 2 | VALLE-VIDAL, CARLOS ANTONIO | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 3 | MORAGA-ROCO, CLAUDIO | Hombre |
European Ctr Soft Comp - España
TU Dortmund Univ - Alemania Centro Europeo de Soft Computing - España TU Dortmund University - Alemania Technische Universität Dortmund - Alemania |
| 4 | ALLENDE-CID, HECTOR GABRIEL | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
Universidad Técnica Federico Santa María - Chile |
| 5 | Salas, Rodrigo | Hombre |
Universidad de Valparaíso - Chile
|
| 6 | Novais, P | - | |
| 7 | Camacho, D | - | |
| 8 | Analide, C | - | |
| 9 | Seghrouchni, AE | - | |
| 10 | Badica, C | - |
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| DGIP-UTFSM |
| Foundation for the Advancement of Soft Computing, Mieres, Spain |
| Agradecimiento |
|---|
| This work was supported by the following research grants: Fondecyt 1110854 and DGIP-UTFSM. The work of C. Moraga was partially supported by the Foundation for the Advancement of Soft Computing, Mieres, Spain. |
| This work was supported by the following research grants: Fondecyt 1110854 and DGIP-UTFSM. The work of C. Moraga was partially supported by the Foundation for the Advancement of Soft Computing, Mieres, Spain. |