Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.ENGSTRUCT.2014.03.016 | ||||
| Año | 2014 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This investigation deals with the design, manufacturing, and testing of a large-capacity MR damper prototype. The MR damper uses external coils that magnetize the MR-fluid as it moves out of the main cylinder through an external cylindrical gap. In its design, multi-physics numerical simulations are used to better understand its force-velocity constitutive behavior, and its eventual use in conjunction with tuned mass dampers for vibration reduction of high-rise buildings. Multi-physics finite element models are used to investigate the coupled magnetic and fluid-dynamic behavior of these dampers and thus facilitate the proof-of-concept testing of several new designs. In these models, the magnetic field and the dynamic behavior of the fluid are represented through the well-known Maxwell and Navier-Stokes equations. Both fields are coupled through the viscosity of the magneto-rheological fluid used, which in turn depends on the magnetic field strength. Some parameters of the numerical model are adjusted using cyclic and hybrid testing results on a 15 ton MR damper with internal coils. Numerical and experimental results for the 15 ton MR damper showed very good agreement, which supports the use of the proposed cascade magnetic-fluid model. The construction of the 97 ton MR damper involved several technical challenges, such as the use of a bimetallic cylinder for the external coils to confine the magnetic field within a predefined magnetic circuit. As it should be expected, test results of the manufactured MR damper show that the damping force increases with the applied current intensity. However, a larger discrepancy between the predicted and measured force in the large damper is observed, which is studied and discussed further herein. (C) 2014 Elsevier Ltd. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Sternberg, Alan | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 2 | Zemp, Rene | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 3 | de la Llera Martin, Juan Carlos | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondo de Fomento al Desarrollo Científico y Tecnológico |
| Fondo Nacional de Ciencia y Tecnología |
| National Research Center for Integrated Natural Disaster Management |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| Fondo de Fomento al Desarrollo CientÃfico y Tecnológico |
| National Research Center for Integrated Natural Disaster Management CONICYT/FONDAP/15110017 |
| Fondo Nacional de Ciencia y TecnologÃa |
| Fondo Nacional de Ciencia y Tecnologia, FONDECYT |
| Fondo de Fomento al Desarrollo Cientifico y Tecnologico, Fondef |
| Agradecimiento |
|---|
| This research has been supported by the Fondo Nacional de Ciencia y Tecnologia, Fondecyt, through Grant #1110377, the Fondo de Fomento al Desarrollo Cientifico y Tecnologico, Fondef, through Grant #D07I1006, and the National Research Center for Integrated Natural Disaster Management CONICYT/FONDAP/15110017. |
| This research has been supported by the Fondo Nacional de Ciencia y Tecnología, Fondecyt , through Grant # 1110377 , the Fondo de Fomento al Desarrollo Científico y Tecnológico, Fondef , through Grant # D07I1006 , and the National Research Center for Integrated Natural Disaster Management CONICYT/FONDAP/15110017. |