Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.NEUNET.2014.03.011 | ||||
| Año | 2014 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper models, analyzes, and evaluates the effects of mismatched analog arithmetic in both feature extraction and classification circuits. For the feature extraction, we propose analog adaptive linear combiners with on-chip learning for both Least Mean Square (LMS) and Generalized Hebbian Algorithm (GHA). Using mathematical abstractions of analog circuits, we identify mismatch parameters that are naturally compensated during the learning process, and propose cost-effective guidelines to reduce the effect of the rest. For the classification, we derive analog models for the circuits necessary to implement Nearest Neighbor (NN) approach and Radial Basis Function (RBF) networks, and use them to emulate analog classifiers with standard databases of face and hand-writing digits. Formal analysis and experiments show how we can exploit adaptive structures and properties of the input space to compensate the effects of device mismatch at the application level, thus reducing the design overhead of traditional layout techniques. Results are also directly extensible to multiple application domains using linear subspace methods. (C) 2014 Elsevier Ltd. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | CARVAJAL-KARL, GONZALO JAVIER | Hombre |
Universidad de Concepción - Chile
|
| 2 | FIGUEROA-YEVENES, MAXIMILIANO | Hombre |
Universidad de Concepción - Chile
|
| Fuente |
|---|
| FONDECYT |
| PIA-CONICYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |