Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S11227-014-1150-9 | ||||
| Año | 2014 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Membrane computing is an emergent research area studying the behavior of living cells to define bio-inspired computing devices, also called P systems. Such devices provide polynomial time solutions to NP-complete problems by trading time for space. The efficient simulation of P systems poses three major challenging issues: an intrinsic massive parallelism of P systems, an exponential computational workspace, and a non-intensive floating point nature. This paper analyzes the simulation of a family of recognizer P systems with active membranes that solves the satisfiability problem in linear time on three different architectures: a shared memory multiprocessor, a distributed memory system, and a manycore graphics processing unit (GPU). For an efficient handling of the exponential workspace created by the P systems computation, we enable different data policies on those architectures to increase memory bandwidth and exploit data locality through tiling. Parallelism inherent to the target P system is also managed on each architecture to demonstrate that GPUs offer a valid alternative for high-performance computing at a considerably lower cost. Our results lead to execution time improvements exceeding 310 and 78, respectively, for a much cheaper high-performance alternative.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | CECILIA-CANALES, JOSE MARIA | Hombre |
Univ Catolica San Antonio UCAM - España
Universidad Católica de Murcia - España |
| 2 | GARCIA-CARRASCO, JOSE MANUEL | Hombre |
UNIV MURCIA - España
Universidad de Murcia - España |
| 3 | Guerrero, Gines D. | Hombre |
Universidad de Chile - Chile
|
| 4 | Ujaldon, Manuel | Hombre |
Univ Malaga - España
Universidad de Málaga - España |
| Fuente |
|---|
| European Commission |
| Junta de Andalucía |
| Fundacion Seneca |
| Junta de AndalucÃa |
| Spanish MEC |
| Fundación Séneca |
| Comisión Interministerial de Ciencia y TecnologÃa |
| Junta de Andalucia under Project of Excellence |
| Fundacion Seneca (Agencia Regional de Ciencia y Tecnologia, Region de Murcia) |
| European Commission FEDER |
| Junta de Andalucia under Project of Excellence |
| Fundacion Seneca (Agencia Regional de Ciencia y Tecnologia, Region de Murcia) |
| European Commission FEDER |
| Universidad Catolica San Antonio de Murcia (UCAM) |
| Comunidad Autónoma de la Región de Murcia |
| Comunidad Autónoma de la Región de Murcia |
| Universidad Católica San Antonio de Murcia |
| Agencia Regional de Ciencia y Tecnología |
| Agradecimiento |
|---|
| This work was jointly supported by the Fundacion Seneca (Agencia Regional de Ciencia y Tecnologia, Region de Murcia) under grant 15290/PI/2010, the Spanish MEC and European Commission FEDER under grant TIN2012-31345, the Junta de Andalucia under Project of Excellence P12-TIC-1741, the Universidad Catolica San Antonio de Murcia (UCAM) under grant PMAFI/26/12 and the supercomputing infrastructure of the NLHPC (ECM-02). We also thank NVIDIA for hardware donation under CUDA Teaching Center 2011-14, CUDA Research Center 2012-14 and CUDA Fellow 2012-14 Awards. Finally, we want to thank all reviewers of this paper for the valuable suggestions they gave us to improve the overall quality of this paper. |
| Acknowledgments This work was jointly supported by the Fundación Séneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under grant 15290/PI/2010, the Spanish MEC and European Commission FEDER under grant TIN2012-31345, the Junta de Andalucía under Project of Excellence P12-TIC-1741, the Universidad Católica San Antonio de Murcia (UCAM) under grant PMAFI/26/12 and the supercomputing infrastructure of the NLHPC (ECM-02). We also thank NVIDIA for hardware donation under CUDA Teaching Center 2011-14, CUDA Research Center 2012-14 and CUDA Fellow 2012-14 Awards. Finally, we want to thank all reviewers of this paper for the valuable suggestions they gave us to improve the overall quality of this paper. |