Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Representing heterogeneity in structural relationships among multiple choice variables using a latent segmentation approach
Indexado
WoS WOS:000491070300009
Scopus SCOPUS_ID:85047125863
DOI 10.1007/S11116-018-9882-7
Año 2019
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Travel model systems often adopt a single decision structure that links several activity-travel choices together. The single decision structure is then used to predict activity-travel choices, with those downstream in the decision-making chain influenced by those upstream in the sequence. The adoption of a singular sequential causal structure to depict relationships among activity-travel choices in travel demand model systems ignores the possibility that some choices are made jointly as a bundle as well as the possible presence of structural heterogeneity in the population with respect to decision-making processes. As different segments in the population may adopt and follow different causal decision-making mechanisms when making selected choices jointly, it would be of value to develop simultaneous equations model systems relating multiple endogenous choice variables that are able to identify population subgroups following alternative causal decision structures. Because the segments are not known a priori, they are considered latent and determined endogenously within a joint modeling framework proposed in this paper. The methodology is applied to a national mobility survey data set to identify population segments that follow different causal structures relating residential location choice, vehicle ownership, and car-share and mobility service usage. It is found that the model revealing three distinct latent segments best describes the data, confirming the efficacy of the modeling approach and the existence of structural heterogeneity in decision-making in the population. Future versions of activity-travel model systems should strive to incorporate such structural heterogeneity to better reflect varying decision processes across population subgroups.

Revista



Revista ISSN
Transportation 0049-4488

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Civil
Transportation
Transportation Science & Technology
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 ASTROZA-TAGLE, SEBASTIAN Hombre Univ Texas Austin - Estados Unidos
Universidad de Concepción - Chile
The University of Texas at Austin - Estados Unidos
Cockrell School of Engineering - Estados Unidos
2 Garikapati, Venu M. - Natl Renewable Energy Lab - Estados Unidos
National Renewable Energy Laboratory - Estados Unidos
3 Pendyala, Ram M. Hombre Arizona State Univ - Estados Unidos
Arizona State University - Estados Unidos
Ira A. Fulton Schools of Engineering - Estados Unidos
4 Bhat, Chandra R. Hombre Univ Texas Austin - Estados Unidos
Hong Kong Polytech Univ - China
The University of Texas at Austin - Estados Unidos
Hong Kong Polytechnic University - Hong Kong
Hong Kong Polytechnic University - China
The Hong Kong Polytechnic University - Hong Kong
Cockrell School of Engineering - Estados Unidos
5 Mokhtarian, Patricia L. Mujer Georgia Inst Technol - Estados Unidos
Georgia Institute of Technology - Estados Unidos
College of Engineering - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Center for Teaching Old Models New Tricks (TOMNET)
US Department of Transportation
Data-Supported Transportation Operations and Planning (D-STOP) Center
U.S. Department of Transportation
Center for Teaching Old Models New Tricks
Data-Supported Transportation Operations and Planning (D-STOP

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was partially supported by the Center for Teaching Old Models New Tricks (TOMNET) as well as the Data-Supported Transportation Operations and Planning (D-STOP) Center, both of which are Tier 1 University Transportation Centers sponsored by the US Department of Transportation (Grant Nos. 69A3551747116 and DTRT13-G-UTC58). The authors are grateful to Lisa Macias for her help in formatting this document. The authors thank three anonymous reviewers for their valuable comments and input that greatly improved the paper.
This research was partially supported by the Center for Teaching Old Models New Tricks (TOMNET) as well as the Data-Supported Transportation Operations and Planning (D-STOP) Center, both of which are Tier 1 University Transportation Centers sponsored by the US Department of Transportation (Grant Nos. 69A3551747116 and DTRT13-G-UTC58). The authors are grateful to Lisa Macias for her help in formatting this document. The authors thank three anonymous reviewers for their valuable comments and input that greatly improved the paper.

Muestra la fuente de financiamiento declarada en la publicación.