Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1155/2014/152375 | ||||
| Año | 2014 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. Thestrategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaiso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0 : 26%, followed by MA-ARIMA with a MAPE of 1 : 12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15 : 51%.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Barba, Lida | Mujer |
Pontificia Universidad Católica de Valparaíso - Chile
Univ Nacl Chimborazo - Ecuador |
| 2 | RODRIGUEZ-AGURTO, JOSE NIBALDO | - |
Pontificia Universidad Católica de Valparaíso - Chile
Universidad Nacional de Chimborazo - Ecuador |
| 3 | Montt, Cecilia | Mujer |
Pontificia Universidad Católica de Valparaíso - Chile
|
| Fuente |
|---|
| CONICYT/FONDECYT/REGULAR |
| DI-Regular project of the Pontificia Universidad Catolica de Valparaiso |