Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



ANALYSIS OF AN AUGMENTED FULLY-MIXED FINITE ELEMENT METHOD FOR A THREE-DIMENSIONAL FLUID-SOLID INTERACTION PROBLEM
Indexado
WoS WOS:000343624400010
Scopus SCOPUS_ID:84901707171
DOI
Año 2014
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We introduce and analyze an augmented fully-mixed finite element method for a fluid-solid interaction problem in 3D. The media are governed by the acoustic and elastodynamic equations in time-harmonic regime, and the transmission conditions are given by the equilibrium of forces and the equality of the corresponding normal displacements. We first employ dual-mixed variational formulations in both domains, which yields the Cauchy stress tensor and the rotation of the solid, together with the gradient of the pressure of the fluid, as the preliminary unknowns. This approach allows us to extend an idea from a recent own work in such a way that both transmission conditions are incorporated now into the definitions of the continuous spaces, and therefore no unknowns on the coupling boundary appear. As a consequence, the pressure of the fluid and the displacement of the solid become explicit unknowns of the coupled problem, and hence two redundant variational terms arising from the constitutive equations, both of them multiplied by stabilization parameters, need to be added for well-posedness. In fact, we show that explicit choices of the above mentioned parameters and a suitable decomposition of the spaces allow the application of the Babuska-Brezzi theory and the Fredholm alternative for concluding the solvability of the resulting augmented formulation. The unknowns of the fluid and the solid are then approximated by a conforming Galerkin scheme defined in terms of Arnold-Falk-Winther and Lagrange finite element subspaces of order 1. The analysis of the discrete method relies on a stable decomposition of the finite element spaces and also on a classical result on projection methods for Fredholm operators of index zero. Finally, numerical results illustrating the theory are also presented..

Disciplinas de Investigación



WOS
Mathematics
Mathematics, Applied
Scopus
Numerical Analysis
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 GATICA-PEREZ, GABRIEL NIBALDO Hombre Universidad de Concepción - Chile
2 SANCHEZ-URIBE, MANUEL ALEJANDRO Hombre Universidad de Oviedo - España
3 Meddahi, Salim Hombre Universidad de Oviedo - España

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
CONICYT
BASAL project CMM, Universidad de Chile
Centro de Investigacion en Ingenieria Matematica (CI<SUP>2</SUP>MA), Universidad de Concepcion
Ministery of Education of Spain

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was partially supported by BASAL project CMM, Universidad de Chile, by Centro de Investigacion en Ingenieria Matematica (CI<SUP>2</SUP>MA), Universidad de Concepcion, by CONICYT project Anillo ACT1118 (ANANUM), and by the Ministery of Education of Spain through the Project MTM2010-18427.

Muestra la fuente de financiamiento declarada en la publicación.