Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.LAA.2013.05.025 | ||||
| Año | 2015 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Given a matrix belonging to some class of structured matrices, we consider the question of comparing the sensitivity of its eigenvalues under two different kinds of perturbations, either unstructured (i.e., arbitrary) or structured (i.e., those belonging to the same class of matrices as the unperturbed one). In a previous paper (Kressner et al., 2009 [13]), the authors compared the structured and unstructured condition numbers of (possibly multiple) eigenvalues for several different matrix and pencil structures. Only one case was left out of the analysis, namely the one where the asymptotic order of perturbed eigenvalues under structured perturbations is different from the asymptotic order under unstructured ones. This is precisely the case we consider in the present paper: given a matrix which is skew-adjoint with respect to a symmetric scalar product and has a zero eigenvalue with a certain Jordan structure, first order expansions are obtained for the perturbed eigenvalues under structured perturbation, as well as bounds on the structured condition number. Similar results are obtained for structured perturbations of symmetric/skew-symmetric and palindromic matrix pencils. (C) 2013 Elsevier Inc. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | PELAEZ-MONTALVO, MARIA JOSE | Mujer |
Universidad Católica del Norte - Chile
|
| 1 | Peláez, María José | Mujer |
Universidad Católica del Norte - Chile
|
| 2 | Moro, Julio | Hombre |
Univ Carlos III Madrid - España
Universidad Carlos III de Madrid - España |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Spanish Ministry of Science |
| Ministerio de Ciencia e Innovación |
| Ministerio de Ciencia e Innovación |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| Chilean Fund for Science and Technology Development |
| Agradecimiento |
|---|
| This research was funded by the Chilean Fund for Science and Technology Development, through grant FONDECYT 11100029, and by the Spanish Ministry of Science through grant MTM2009-09180. |
| E-mail addresses: mpelaez@ucn.cl (M.J. Peláez), jmoro@math.uc3m.es (J. Moro). 1 The research of this author was supported by Fondecyt 11100029. 2 The research of this author was supported by the Spanish Ministry of Science under grant MTM2009-09180. |