Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Experimental analysis of large capacity MR dampers with short- and long-stroke
Indexado
WoS WOS:000345275400029
Scopus SCOPUS_ID:84911415943
DOI 10.1088/0964-1726/23/12/125028
Año 2014
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The purpose of this article is to study and characterize experimentally two magneto-rheological dampers with short- and long-stroke, denoted hereafter as MRD-S and MRD-L. The latter was designed to improve the Earthquake performance of a 21-story reinforced concrete building equipped with two 160 ton tuned pendular masses. The MRD-L has a nominal force capacity of 300 kN and a stroke of +/- 1 m; the MRD-S has a nominal force capacity of 150 kN, and a stroke of +/- 0.1 m. The MRD-S was tested with two different magneto-rheological and one viscous fluid. Due to the presence of Eddy currents, both dampers show a time lag between current intensity and damper force as the magnetization on the damper changes in time. Experimental results from the MRD-L show a force drop-off behavior. A decrease in active-mode forces due to temperature increase is also analyzed for the MRD-S and the different fluids. Moreover, the observed increase in internal damper pressure due to energy dissipation is evaluated for the different fluids in both dampers. An analytical model to predict internal pressure increase in the damper is proposed that includes as a parameter the concentration of magnetic particles inside the fluid. Analytical dynamic pressure results are validated using the experimental tests. Finally, an extended Bingham fluid model, which considers compressibility of the fluid, is also proposed and validated using damper tests.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Instruments & Instrumentation
Materials Science, Multidisciplinary
Scopus
Civil And Structural Engineering
Electrical And Electronic Engineering
Materials Science (All)
Mechanics Of Materials
Atomic And Molecular Physics, And Optics
Signal Processing
Condensed Matter Physics
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Zemp, Rene Hombre Pontificia Universidad Católica de Chile - Chile
2 de la Llera Martin, Juan Carlos Hombre Pontificia Universidad Católica de Chile - Chile
3 Weber, Felix Hombre Empa - Suiza
Empa - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 16.67 %
Citas No-identificadas: 83.33 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 16.67 %
Citas No-identificadas: 83.33 %

Financiamiento



Fuente
FONDECYT
CONICYT
Fondef
CORFO
MECESUP
Pontificia Universidad Católica de Chile
National Research Center for Integrated Natural Disaster Management
Swiss Federal Laboratories for Materials Science and Technology, EMPA in Switzerland

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors gratefully acknowledge the support of Pontificia Universidad Catolica de Chile, and the Swiss Federal Laboratories for Materials Science and Technology, EMPA in Switzerland. This research has been sponsored by different research grants, Fondef Grant D07I1006, Corfo Grant 11IDL210806, Mecesup PUC 0710, Conicyt Grant 57090131, Fondecyt Grant 1110377, and by the National Research Center for Integrated Natural Disaster Management through Grant CONICYT/FONDAP/15110017. The authors are grateful for this support and that of the companies Lord Corporation and BASF for providing the MR fluids and their technical support; Revesol Inc. and the manufacturing team; VULCO Inc. for sponsoring the extension of the test machine; Sika for providing the FRP lamella; National Instruments for the help in the implementation of the controller; Hallite for the help with the damper sealing concept; SIRVE Inc. and its team for the technical support; CIP Inc. for allowing to carry this research in a real building in Santiago, Chile; and VMB for the structural review of the implementation of the damper in the building. Special thanks to Christoffer Kieburg (BASF), Doug Hodgson (Lord), Milan Ceric and Thierry Berset (Sika), Luis Elias and Rodrigo Riquelme (National Instruments), Dirk Meyerhoff (Hallite), Hans Ajiet Holtkamp and his team (Disynet), Gregor Schwegler (StressHead), Wolfhard Zahlten (Bergische Universitat Wuppertal), Hernaldo Saldias (PUC), and the PUC professors Roberto Rodriguez, Josee Luis Almazan, Pablo Irarrazaval and Juan Dixon for their invaluable technical advice.

Muestra la fuente de financiamiento declarada en la publicación.