Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A Multi-Objective Genetic Algorithm for determining efficient Risk-Based Inspection programs
Indexado
WoS WOS:000345469600025
Scopus SCOPUS_ID:84908431670
DOI 10.1016/J.RESS.2014.09.018
Año 2015
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This paper proposes a coupling between Risk-Based Inspection (RBI) methodology and Multi-Objective Genetic Algorithm (MOGA) for defining efficient inspection programs in terms of inspection costs and risk level, which also comply with restrictions imposed by international standards and/or local government regulations. The proposed RBI+MOGA approach has the following advantages: (i) a user-defined risk target is not required; (ii) it is not necessary to estimate the consequences of failures; (iii) the inspection expenditures become more manageable, which allows assessing the impact of prevention investments on the risk level; (iv) the proposed framework directly provides, as part of the solution, the information on how the inspection budget should be efficiently spent. Then, genetic operators are tailored for solving this problem given the huge size of the search space. The ability of the proposed RBI+MOGA in providing efficient solutions is evaluated by means of two examples, one of them involving an oil and gas separator vessel subject to internal and external corrosion that cause thinning. The obtained results indicate that the proposed genetic operators significantly reduce the search space to be explored and RBI+MOGA is a valuable method to support decisions concerning the mechanical integrity of plant equipment. (C) 2014 Elsevier Ltd. All rights reserved.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Industrial
Operations Research & Management Science
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 DAS CHAGAS-MOURA, MARCIO Hombre Univ Fed Pernambuco - Brasil
Universidade de Pernambuco - Brasil
Universidade Federal de Pernambuco - Brasil
2 Lins, Isis Didier Mujer Univ Fed Pernambuco - Brasil
Universidade de Pernambuco - Brasil
Universidade Federal de Pernambuco - Brasil
3 LOPEZ-DROGUETT, ENRIQUE ANDRES Hombre UNIV MARYLAND - Estados Unidos
A. James Clark School of Engineering - Estados Unidos
4 Soares, Rodrigo Ferreira Hombre Petrobras SA - Brasil
Petrobras - Brasil
5 PASCUAL-URZUA, RODRIGO Hombre Pontificia Universidad Católica de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Brazilian research-funding agency Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The first three authors thank the Brazilian research-funding agency Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) for the financial support through research grants.
The first three authors thank the Brazilian research-funding agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support through research grants.

Muestra la fuente de financiamiento declarada en la publicación.