Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.24033/BSMF.2670 | ||||
| Año | 2014 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study the dynamics of polynomials with coefficients in a non-Archimedean field K, where K is a field containing a dense subset of algebraic elements over a discrete valued field k. We prove that every wandering Fatou component is contained in the basin of a periodic orbit. We obtain a complete description of the new Julia set points that appear when passing from K to the Berkovich affine line over K. We give a dynamical characterization of polynomials having algebraic Julia sets. More precisely, we establish that a polynomial with algebraic coefficients has algebraic Julia set if every critical element is nonrecurrent.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Trucco, Eugenio | Hombre |
Universidad Austral de Chile - Chile
|