Muestra la distribución de disciplinas para esta publicación.
Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.
| Indexado |
|
||
| DOI | |||
| Año | 2014 | ||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider a reinforcement learning setting introduced in [5] where the learner does not have explicit access to the states of the underlying Markov decision process (MDP). Instead, she has access to several models that map histories of past interactions to states. Here we improve over known regret bounds in this setting, and more importantly generalize to the case where the models given to the learner do not contain a true model resulting in an MDP representation but only approximations of it. We also give improved error bounds for state aggregation.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Ortner, Ronald | Hombre |
Univ Leoben - Austria
|
| 2 | Maillard, Odalric-Ambrym | - |
Technion Israel Inst Technol - Israel
|
| 3 | Ryabko, Daniil | Hombre |
INRIA Lille Nord Europe - Francia
INRIA - Chile |
| 4 | Auer, P | - | |
| 5 | Clark, A | - | |
| 6 | Zeugmann, T | - | |
| 7 | Zilles, S | - |