Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Fast BMU Search in SOMs Using Random Hyperplane Trees
Indexado
WoS WOS:000354778700004
Scopus SCOPUS_ID:84911920266
DOI
Año 2014
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



One of the most prominent Neural Networks (NNs) reported in the literature is the Kohonen's Self-Organizing Map (SOM). In spite of all its desirable capabilities and the scores of reported applications, it, unfortunately, possesses some fundamental drawbacks. Two of these handicaps are the quality of the map learned and the time required to train it. The most demanding phase of the algorithm involves determining the so-called Best Matching Unit (BMU)(1), which requires time that is proportional to the number of neurons in the NN. The focus of this paper is to reduce the time needed for this tedious task, and to attempt to obtain an approximation of the BMU is as little as logarithmic time. To achieve this, we depend heavily on the work of [3,6], where the authors focused on how to accurately learn the data distribution connecting the neurons on a self-organizing tree, and how the learning algorithm, called the Tree-based Topology-Oriented SOM (TTOSOM), can be useful for data clustering [3,6] and classification [5]. We briefly state how we intend to reduce the training time for identifying the BMU efficiently. First, we show how a novel hyperplane-based partitioning scheme can be used to accelerate the task. Unlike the existing hyperplane-based partitioning methods reported in the literature, our algorithm can avoid ill-conditioned scenarios. It is also capable of considering data points that are dynamic. We demonstrate how these hyperplanes can be recursively defined, represented and computed, so as to recursively divide the hyper-space into two halves. As far as we know, the use of random hyperplanes to identify the BMU is both pioneering and novel.

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Computer Science (All)
Theoretical Computer Science
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 ASTUDILLO-HERNANDEZ, CESAR ALEJANDRO Hombre Universidad de Talca - Chile
2 Oommen, B. John - CARLETON UNIV - Canadá
Carleton University - Canadá
3 Pham, DN -
4 Park, SB -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 50.0 %
Citas No-identificadas: 50.0 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 50.0 %
Citas No-identificadas: 50.0 %

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.