Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1103/PHYSREVD.91.121501 | ||||
| Año | 2015 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
It is postulated that quantum gravity is a sum over causal structures coupled to matter via scale evolution. Quantized causal structures can be described by studying simple matrix models where matrices are replaced by an algebra of quantum mechanical observables. In particular, previous studies constructed quantum gravity models by quantizing the moduli of Laplace, weight, and defining- function operators on Fefferman-Graham ambient spaces. The algebra of these operators underlies conformal geometries. We extend those results to include fermions by taking an osp(1/2) "Dirac square root" of these algebras. The theory is a simple, Grassmann, two-matrix model. Its quantum action is a Chern-Simons theory whose differential is a first-quantized, quantum mechanical Becchi-Rouet-Stora-Tyutin operator. The theory is a basic ingredient for building fundamental theories of physical observables.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bonezzi, R. | Hombre |
UNIV BOLOGNA - Italia
Ist Nazl Fis Nucl - Italia Universidad Nacional Andrés Bello - Chile Alma Mater Studiorum Università di Bologna - Italia Istituto Nazionale di Fisica Nucleare, Sezione di Bologna - Italia |
| 2 | Corradini, O. | - |
Univ Autonoma Chiapas - México
Univ Modena & Reggio Emilia - Italia Universidad Autónoma de Chiapas - México Università degli Studi di Modena e Reggio Emilia - Italia |
| 3 | Latini, E. | - |
UNIV ZURICH - Suiza
Ist Nazl Fis Nucl - Italia University of Zurich - Suiza INFN, Laboratori Nazionali Di Frascati - Italia Universität Zürich - Suiza |
| 4 | Waldron, A. | - |
UNIV CALIF DAVIS - Estados Unidos
University of California, Davis - Estados Unidos |
| Fuente |
|---|
| SNF |
| UCMEXUS-CONACyT grant |
| NCCR SwissMAP - Swiss National Science Foundation |
| Simons Foundation Collaboration Grant for Mathematicians |
| Agradecimiento |
|---|
| We thank Itzhak Bars, Rod Gover, Robin Graham, Albert Schwarz, and Per Sundell for discussions. R. B. and A. W. thank the Universidad Andres Bello for hospitality. E. L. acknowledges partial support from SNF Grant No. 200020-149150/1 and NCCR SwissMAP, funded by the Swiss National Science Foundation. A. W. and O. C. were supported in part by the UCMEXUS-CONACYT Grant No. CN-12-564. A. W. was supported in part by a Simons Foundation Collaboration Grant for Mathematicians. |