Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1088/0951-7715/28/7/2027 | ||||
| Año | 2015 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
with monotone reaction term g : R+ -> R+. Our basic assumption is that this equation possesses pushed traveling fronts. First we prove that the pushed wavefronts are nonlinearly stable with asymptotic phase. Moreover, combinations of these waves attract, uniformly on R, every solution of equation (*) with the initial datum sufficiently rapidly decaying at one (or both) infinities of the real line. These results provide a sharp form of the theory of spreading speeds for equation (*).
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Solar, Abraham | Hombre |
Universidad de Talca - Chile
|
| 2 | Trofimchuk, S. | Hombre |
Universidad de Talca - Chile
|
| Agradecimiento |
|---|
| The authors wish to express their deep appreciation to the two anonymous referees for their valuable comments which helped to improve the final version of this paper. In particular, remarks 1.1, 1.6 and 1.7 were written on the basis of the referees' suggestions. This research was supported by FONDECYT (Chile), project 1150480. |