Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Reusing cost-minimal paths for goal-directed navigation in partially known terrains
Indexado
WoS WOS:000357652000005
Scopus SCOPUS_ID:84937636805
DOI 10.1007/S10458-014-9266-0
Año 2015
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Situated agents frequently need to solve search problems in partially known terrains in which the costs of the arcs of the search graphs can increase (but not decrease) when the agents observe new information. An example of such search problems is goal-directed navigation with the freespace assumption in partially known terrains, where agents repeatedly follow cost-minimal paths from their current locations to given goal locations. Incremental heuristic search is an approach for solving the resulting sequences of similar search problems potentially faster than with classical heuristic search, by reusing information from previous searches to speed up its current search. There are two classes of incremental heuristic search algorithms, namely those that make the -values of the current search more informed (such as Adaptive A*) and those that reuse parts of the A* search trees of previous searches during the current search (such as D* Lite). In this article, we introduce Path-Adaptive A* and its generalization Tree-Adaptive A*. Both incremental heuristic search algorithms terminate their searches before they expand the goal state, namely when they expand a state that is on a provably cost-minimal path to the goal. Path-Adaptive A* stores a single cost-minimal path to the goal state (the reusable path), while Tree-Adaptive A* stores a set of cost-minimal paths to the goal state (the reusable tree), and is thus potentially more efficient than Path-Adaptive A* since it uses information from all previous searches and not just the last one. Tree-Adaptive A* is the first incremental heuristic search algorithm that combines the principles of both classes of incremental heuristic search algorithms. We demonstrate experimentally that both Path-Adaptive A* and Tree-Adaptive A* can be faster than Adaptive A* and D* Lite, two state-of-the-art incremental heuristic search algorithms for goal-directed navigation with the freespace assumption.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Artificial Intelligence
Automation & Control Systems
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 HERNANDEZ-ULLOA, CARLOS MARCELO Hombre Universidad Católica de la Santísima Concepción - Chile
2 Uras, Tansel Hombre UNIV SO CALIF - Estados Unidos
University of Southern California - Estados Unidos
3 Koenig, Sven Hombre UNIV SO CALIF - Estados Unidos
University of Southern California - Estados Unidos
4 BAIER-ARANDA, JORGE ANDRES Hombre Pontificia Universidad Católica de Chile - Chile
5 Sun, Xiaoxun - Google - Estados Unidos
Google LLC - Estados Unidos
6 Meseguer, Pedro Hombre IIIA CSIC - España
CSIC - Instituto de Investigacion en Inteligencia Artificial (IIIA) - España

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Science Foundation
Spanish Ministry of Science and Innovation
FONDECYT-Chile
Ministerio de Ciencia e Innovación
NSF
Office of Naval Research
Army Research Office
Army Research Laboratory
ARL/ARO
DOT
ONR in form of a MURI
Multidisciplinary University Research Initiative
Department of Telecommunications, Ministry of Communications, India
Div Of Information & Intelligent Systems; Direct For Computer & Info Scie & Enginr

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This material is based upon work supported by NSF (while Sven Koenig was serving at NSF). It is also based upon work supported by Fondecyt-Chile under contract/Grant number 11080063, NSF under contract/Grant number 115-1319966, ARL/ARO under contract/Grant number W911NF-08-1-0468, ONR in form of a MURI under contract/Grant number N00014-09-1-1031, DOT under contract/Grant number DTFH61-11-C-00010 and the Spanish Ministry of Science and Innovation under Grant number TIN2009-13591-C02-02. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the sponsoring organizations, agencies, companies or the U.S. government. We thank Nathan Sturtevant for making his maps available at movingai.com.
This material is based upon work supported by NSF (while Sven Koenig was serving at NSF). It is also based upon work supported by Fondecyt-Chile under contract/Grant number 11080063, NSF under contract/Grant number 115-1319966, ARL/ARO under contract/Grant number W911NF-08-1-0468, ONR in form of a MURI under contract/Grant number N00014-09-1-1031, DOT under contract/Grant number DTFH61-11-C-00010 and the Spanish Ministry of Science and Innovation under Grant number TIN2009-13591-C02-02. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the sponsoring organizations, agencies, companies or the U.S. government. We thank Nathan Sturtevant for making his maps available at movingai.com.

Muestra la fuente de financiamiento declarada en la publicación.