Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JMMM.2015.05.064 | ||||
| Año | 2015 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The (110) surface of iron fluoride (FeF2) is especially relevant to the understanding of the exchange bias phenomenon, which has important applications in the sensor industry, and has been extensively explored, both theoretically and experimentally. Here we investigate this FeF2 surface by means of oh mine techniques. We compute the (110) surface reconstruction, energetics, magnetic moments, band structure, charge density and electron localization function, for the two possible terminations (Fe and F). The surface reconstruction modifies the atomic and electronic structure of the free surface, yielding magnetism of a magnitude of 0.1 mu(B) per surface unit cell. Moreover, the charge density also changes, which alters the bonding in the vicinity of the surface. All these changes are expected to be relevant for exchange bias, that is once a ferromagnetic layer is deposited on the FeF2 surface. (C) 2015 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | MUNOZ-SAEZ, FRANCISCO JAVIER | Hombre |
Universidad de Chile - Chile
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile |
| 2 | Romero, Aldo H. | Hombre |
W VIRGINIA UNIV - Estados Unidos
West Virginia University - Estados Unidos |
| 3 | Mejia-Lopez, Jose | Hombre |
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile
Pontificia Universidad Católica de Chile - Chile |
| 4 | Roshchin, Igor V. | Hombre |
Texas A&M Univ - Estados Unidos
Texas A&M University - Estados Unidos |
| 5 | GONZALEZ-VALDES, RAFAEL IGNACIO | Hombre |
Universidad de Chile - Chile
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile |
| 6 | KIWI-KRAUSKOPF, MARCOS ABRAHAM | Hombre |
Universidad de Chile - Chile
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile |
| Fuente |
|---|
| National Science Foundation |
| Consejo Nacional de Ciencia y Tecnología |
| Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia |
| Texas AM University |
| University of Texas at Austin |
| Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas |
| Fondo Nacional de Investigaciones Cientificas y Tecnologicas (FONDECYT, Chile) |
| Texas A and M University |
| Consejo Nacional de Ciencia y TecnologÃa, Paraguay |
| Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas |
| American Chemical Society Petroleum Research Fund |
| Texas Advanced Computing Center |
| Donors of the American Chemical Society Petroleum Research Fund |
| Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia, Chile |
| Texas A&M University - CONACyT collaborative research program |
| state of West Virginia (WVEPSCoR via the Higher Education Policy Commission) |
| Higher Education Policy Commission |
| West Virginia University |
| WVEPSCoR |
| West Virginia Department of Transportation |
| West Virginia Higher Education Policy Commission |
| Agradecimiento |
|---|
| Supported by the Fondo Nacional de Investigaciones Cientificas y Tecnologicas (FONDECYT, Chile) under grants 11110510 and 1150806 (F.M.), 1130672 (J.M.L.), 3140526 (R.G.), 1120399 and 1130272 (M.K.), Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia, Chile, the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research under Contract 54075-ND10 (A.R.), Texas A&M University - CONACyT collaborative research program (I.V.R. and A.H.R.), and Texas A&M University (I.V.R.). We acknowledge the use of Extreme Science and Engineering Discovery Environment (XSEDE) supported by National Science Foundation Grant no. OCI-1053575. Furthermore, for providing HPC resources, the authors acknowledge Texas Advanced Computing Center (TACC) at the University of Texas at Austin, and Super Computing System (Mountaineer) at WVU, funded in part by the National Science Foundation EPSCoR Research Infrastructure Improvement Cooperative Agreement 1003907, the state of West Virginia (WVEPSCoR via the Higher Education Policy Commission), and WVU. |
| Supported by the Fondo Nacional de Investigaciones Científicas y Tecnológicas (FONDECYT, Chile) under grants 11110510 and 1150806 (F.M.) , 1130672 (J.M.L.) , 3140526 (R.G.) , 1120399 and 1130272 (M.K.) , Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia, Chile , the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research under Contract 54075-ND10 (A.R.) , Texas A&M University – CONACyT collaborative research program (I.V.R. and A.H.R.) , and Texas A&M University (I.V.R.) . We acknowledge the use of Extreme Science and Engineering Discovery Environment (XSEDE) supported by National Science Foundation Grant no. OCI-1053575 . Furthermore, for providing HPC resources, the authors acknowledge Texas Advanced Computing Center (TACC) at the University of Texas at Austin, and Super Computing System (Mountaineer) at WVU, funded in part by the National Science Foundation EPSCoR Research Infrastructure Improvement Cooperative Agreement 1003907 , the state of West Virginia (WVEPSCoR via the Higher Education Policy Commission) , and WVU . |