Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JAT.2015.06.001 | ||||
| Año | 2015 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Let f be a regular non-constant symbol defined on the d-dimensional torus T-d with values on the unit circle. Denote respectively by K and L, its set of critical points and the associated Laurent operator on l(2)(Z(d)). Let U be a suitable unitary local perturbation of L. We show that the operator U has finite point spectrum and no singular continuous component away from the set f (K). We apply these results and provide a new approach to analyze the spectral properties of GOT matrices with asymptotically constant Verblunsky coefficients. The proofs are based on positive commutator techniques. We also obtain some propagation estimates. (C) 2015 Elsevier Inc. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | ASTABURUAGA-EGUIGUREN, MARIA ANGELICA | Mujer |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| 2 | BOURGET, OLIVIER CHRISTIAN FRANCOIS GASTON | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| 3 | Cortes, Victor | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| ECOS-CONICYT |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| Grant FONDECYT |
| Agradecimiento |
|---|
| The authors thank J. Asch, A. Joye and the referees for their informative comments and suggestions. The authors were supported by the Grant Fondecyt 1120786, ECOS-Conicyt C10E10. |
| The authors thank J. Asch, A. Joye and the referees for their informative comments and suggestions. The authors were supported by the Grant Fondecyt 1120786 , ECOS-Conicyt C 10E10. |