Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Gender Classification from Iris Images Using Fusion of Uniform Local Binary Patterns
Indexado
WoS WOS:000362495500057
Scopus SCOPUS_ID:84928792075
DOI 10.1007/978-3-319-16181-5_57
Año 2015
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This paper is concerned in analyzing iris texture in order to determine "soft biometric", attributes of a person, rather than identity. In particular, this paper is concerned with predicting the gender of a person based on analysis of features of the iris texture. Previous researchers have explored various approaches for predicting the gender of a person based on iris texture. We explore using different implementations of Local Binary Patterns from the iris image using the masked information. Uniform LBP with concatenated histograms significantly improves accuracy of gender prediction relative to using the whole iris image. Using a subject-disjoint test set, we are able to achieve over 91% correct gender prediction using the texture of the iris. To our knowledge, this is the highest accuracy yet achieved for predicting gender from iris texture.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Computer Science (All)
Theoretical Computer Science
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 TAPIA-FARIAS, JUAN EDUARDO Hombre Universidad de Chile - Chile
Advanced Mining Technology Center - Chile
2 PEREZ-FLORES, CLAUDIO ANDRES Hombre Universidad de Chile - Chile
Advanced Mining Technology Center - Chile
3 Bowyer, Kevin W. Hombre UNIV NOTRE DAME - Estados Unidos
University of Notre Dame - Estados Unidos
4 Agapito, L -
5 Bronstein, MM -
6 Rother, C -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 11.11 %
Citas No-identificadas: 88.89 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 11.11 %
Citas No-identificadas: 88.89 %

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.