Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/978-3-319-16181-5_57 | ||||
| Año | 2015 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper is concerned in analyzing iris texture in order to determine "soft biometric", attributes of a person, rather than identity. In particular, this paper is concerned with predicting the gender of a person based on analysis of features of the iris texture. Previous researchers have explored various approaches for predicting the gender of a person based on iris texture. We explore using different implementations of Local Binary Patterns from the iris image using the masked information. Uniform LBP with concatenated histograms significantly improves accuracy of gender prediction relative to using the whole iris image. Using a subject-disjoint test set, we are able to achieve over 91% correct gender prediction using the texture of the iris. To our knowledge, this is the highest accuracy yet achieved for predicting gender from iris texture.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | TAPIA-FARIAS, JUAN EDUARDO | Hombre |
Universidad de Chile - Chile
Advanced Mining Technology Center - Chile |
| 2 | PEREZ-FLORES, CLAUDIO ANDRES | Hombre |
Universidad de Chile - Chile
Advanced Mining Technology Center - Chile |
| 3 | Bowyer, Kevin W. | Hombre |
UNIV NOTRE DAME - Estados Unidos
University of Notre Dame - Estados Unidos |
| 4 | Agapito, L | - | |
| 5 | Bronstein, MM | - | |
| 6 | Rother, C | - |