Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3233/IDA-150776 | ||||
| Año | 2015 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The share of the services offered via the Internet by nowadays banking companies is quickly growing, making of the understanding of online customers one of the major concerns. Data mining tools have proven their efficiency in addressing this challenge by providing unsupervised quantitative techniques to identify those segments of customers with similar characteristics. This paper will focus on segmenting an online banking customer base in a meaningful way for the business by enhancing an unsupervised quantitative technique approach with domain knowledge. Both traditional and knowledge-based approaches will be applied and evaluated. Thanks to an extensive description and discussion of the new insights, the complementarity of the two approaches is illustrated.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Seret, Alex | Hombre |
Universidad de Los Andes, Chile - Chile
Katholieke Univ Leuven - Bélgica KU Leuven - Bélgica |
| 2 | Bejinaru, Andreea | Mujer |
Katholieke Univ Leuven - Bélgica
KU Leuven - Bélgica |
| 3 | Baesens, Bart | Hombre |
Katholieke Univ Leuven - Bélgica
Univ Southampton - Reino Unido Vlerick - Bélgica KU Leuven - Bélgica University of Southampton - Reino Unido |
| Fuente |
|---|
| Comisión Nacional de Investigación Científica y Tecnológica |
| Complex Engineering Systems Institute |
| Instituto de Sistemas Complejos de Ingeniería |
| Institut de Cardiologie de Montréal |