Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/JHEP10(2015)068 | ||||
| Año | 2015 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider the linear stability of 4-dimensional hairy black holes with mixed boundary conditions in Anti-de Sitter spacetinie. We focus on the mass of scalar fields around the maximally supersymmetric vacuum of the gauged N = 8 supergravity in four dimensions, m(2) = -2l(-2). It is shown that the Schrodinger operator on the half-line, governing the S-2, H-2 or R-2 invariant mode around the hairy black hole, allows for nontrivial self-adjoint extensions and each of them corresponds to a class of mixed boundary conditions in the gravitational theory. Discarding the self-adjoint extensions with a negative mode impose a restriction on these boundary conditions. The restriction is given in terms of an integral of the potential in the Schrodinger operator resembling the estimate of Simon for Schrodinger operators on the real line. In the context of AdS/CFT duality, our result has a natural interpretation in terms of the field theory dual effective potential.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | ANABALO-DUPUY, ANDRES FERNANDO | Hombre |
Universidad Adolfo Ibáñez - Chile
|
| 2 | Astefanesei, D. | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 3 | Oliva, Julio | Hombre |
Universidad de Concepción - Chile
|
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Newton-Picarte |
| Albert Einstein Center |
| Agradecimiento |
|---|
| A. A. thanks the enlightening discussions with Simon Ross about stability, Ioannis Papadimitriou for clarifying several aspects of the holographic interpretation and the hospitality of Durham University where this work was boosted. A.A. also thanks the the hospitality of Wellington Galleas at DESY and Jiri Bicak at Charles University where this work was continued and completed (supported from the Grant No. 14-37086G, Albert Einstein Center). We would like to thank Cristian Martinez and Raul Rojas for interesting discussions and collaboration on related projects. Research of A.A. is supported in part by the Fondecyt Grants No 11121187 and 1141073, and by the Newton-Picarte Grants DPI20140053 and DPI20140115. Research of D.A. has been partially funded by the Fondecyt grants 1120446 and by the Newton-Picarte Grant DPI20140115. J.O.. is supported by FONDECYT grant 1141073 and by the Newton-Picarte Grant DPI20140053. |