Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10915-015-0008-5 | ||||
| Año | 2015 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper we introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for numerically solving a class of nonlinear Stokes models arising in quasi-Newtonian fluids. Similarly as in previous papers dealing with the application of mixed finite element methods to these nonlinear models, we use the incompressibility condition to eliminate the pressure, and set the velocity gradient as an auxiliary unknown. In addition, we enrich the HDG formulation with two suitable augmented equations, which allows us to apply known results from nonlinear functional analysis, namely a nonlinear version of Babuka-Brezzi theory and the classical Banach fixed-point theorem, to prove that the discrete scheme is well-posed and derive the corresponding a priori error estimates. Then we discuss some general aspects concerning the computational implementation of the method, which show a significant reduction of the size of the linear systems involved in the Newton iterations. Finally, we provide several numerical results illustrating the good performance of the proposed scheme and confirming the optimal order of convergence provided by the HDG approximation.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | GATICA-PEREZ, GABRIEL NIBALDO | Hombre |
Universidad de Concepción - Chile
|
| 2 | SEQUEIRA-CHAVARRIA, FILANDER A. | - |
Univ Nacl Costa Rica - Costa Rica
Universidad Nacional de Costa Rica - Costa Rica Universidad de Concepción - Chile Universidad Nacional - Costa Rica |
| Fuente |
|---|
| Universidad de Concepción |
| CONICYT-Chile |
| Universidad de Chile |
| Comisión Nacional de Investigación Científica y Tecnológica |
| ANANUM |
| Project Anillo |
| Centro de Investigacion en Ingenieria Matematica (CI2MA), Universidad de Concepcion |
| Becas-Chile Programme for foreign students |
| Centro de Investigación en Ingeniería Matemática |
| CONICYT-Chile through BASAL project CMM |
| Agradecimiento |
|---|
| This work was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, project Anillo ACT1118 (ANANUM), and the Becas-Chile Programme for foreign students; and by Centro de Investigacion en Ingenieria Matematica (CI<SUP>2</SUP>MA), Universidad de Concepcion. |
| This work was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, project Anillo ACT1118 (ANANUM), and the Becas-Chile Programme for foreign students; and by Centro de Investigación en Ingeniería Matemática (), Universidad de Concepción. |