Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.AMC.2015.03.050 | ||||
| Año | 2016 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In applications solutions of systems of hyperbolic balance laws often have to satisfy additional side conditions. We consider initial value problems for the general class of Friedrichs systems where the solutions are constrained by differential conditions given in the form of involutions. These occur in particular in electrodynamics, electro- and magnetohydrodynamics as well as in elastodynamics. Neglecting the involution on the discrete level typically leads to instabilities. To overcome this problem in electrodynamical applications it has been suggested in Munz et al. (2000) to solve an extended system. Here we suggest an extended formulation to the general class of constrained Friedrichs systems. It is proven for explicit Finite-Volume schemes that the discrete solution of the extended system converges to the weak solution of the original system for vanishing discretization and extension parameter under appropriate scalings. Moreover we show that the involution is weakly satisfied in the limit. The proofs rely on a reformulation of the extension as a relaxation-type approximation and careful use of the convergence theory for finite-volume methods for systems of Friedrichs type. Numerical experiments illustrate Off analytical results. (C) 2015 Elsevier Inc. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Betancourt, Fernando | Hombre |
Universidad de Concepción - Chile
|
| 2 | Rohde, Christian | Hombre |
UNIV STUTTGART - Alemania
Universitat Stuttgart - Alemania |
| Fuente |
|---|
| Universidad de Concepción |
| Universidad de Chile |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Deutsche Forschungsgemeinschaft |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| Fondecyt Project |
| Universidad de Concepción |
| Centro de Investigación en Ingeniería Matemática |
| Centro de Investigación en Computación |
| Basal Project CMM |
| German Research Foundation (DFG) within the Cluster of Excellence in Simulation Technology at the University of Stuttgart |
| Universität Stuttgart |
| Universität Stuttgart |
| Centro de Investigacion en Ingenicria Matematica |
| CRHIAM Fondap project |
| Univcrsidad de Concepcion |
| Agradecimiento |
|---|
| F.B. acknowledges support by Fondecyt project 11130397, CRHIAM Fondap project 15130015 and BASAL project CMM, Universidad de Chile and Centro de Investigacion en Ingenicria Matematica (CI2 MA), Univcrsidad de Concepcion. C.R. would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/2) at the University of Stuttgart. |
| F.B. acknowledges support by Fondecyt project 11130397 , CRHIAM Fondap project 15130015 and BASAL project CMM, Universidad de Chile and Centro de Investigación en Ingeniería Matemática (CI2 MA), Universidad de Concepción. C.R. would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/2) at the University of Stuttgart. |