Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S11228-015-0328-5 | ||||
| Año | 2015 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The paper concerns parameterized equilibria governed by generalized equations whose multivalued parts are modeled via regular normals to nonconvex conic constraints. Our main goal is to derive a precise pointwise second-order formula for calculating the graphical derivative of the solution maps to such generalized equations that involves Lagrange multipliers of the corresponding KKT systems and critical cone directions. Then we apply the obtained formula to characterizing a Lipschitzian stability notion for the solution maps that is known as isolated calmness.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Mordukhovich, Boris S. | Hombre |
Wayne State Univ - Estados Unidos
Wayne State University - Estados Unidos |
| 2 | Outrata, Jiri V. | - |
Acad Sci Czech Republ - República Checa
Federat Univ Australia - Australia Institute of Information Theory and Automation of the Academy of Sciences of the Czech Republic - República Checa Federation University Australia - Australia |
| 2 | Outrata, Jiri V. | - |
Institute of Information Theory and Automation of the Academy of Sciences of the Czech Republic - República Checa
Federation University Australia - Australia |
| 3 | RAMIREZ-ESTAY, HECTOR | Hombre |
Universidad de Chile - Chile
|
| 3 | Hector Ramirez, C. | - |
Universidad de Chile - Chile
|
| Fuente |
|---|
| FONDECYT |
| National Science Foundation |
| Australian Research Council |
| Grant Agency of the Czech Republic |
| BASAL Project Centro de Modelamiento Matematico, Universidad de Chile |
| Directorate for Mathematical and Physical Sciences |
| Direct For Mathematical & Physical Scien; Division Of Mathematical Sciences |
| Agradecimiento |
|---|
| Research of B. S. Mordukhovich was partly supported by the National Science Foundation under grant DMS-1007132. Research of J. V. Outrata was partly supported by grant P201/12/0671 of the Grant Agency of the Czech Republic and the Australian Research Council under grant DP-110102011. Research of H. Ramirez C. was partly supported by FONDECYT Project 1110888 and BASAL Project Centro de Modelamiento Matematico, Universidad de Chile. |