Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.YDBIO.2015.03.009 | ||||
| Año | 2015 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Spinal cord regeneration is very inefficient in humans, causing paraplegia and quadriplegia. Studying model organisms that can regenerate the spinal cord in response to injury could be useful for understanding the cellular and molecular mechanisms that explain why this process fails in humans. Here, we use Xenopus laevis as a model organism to study spinal cord repair. Histological and functional analyses showed that larvae at pre-metamorphic stages restore anatomical continuity of the spinal cord and recover swimming after complete spinal cord transection. These regenerative capabilities decrease with onset of metamorphosis. The ability to study regenerative and non-regenerative stages in Xenopus laevis makes it a unique model system to study regeneration. We studied the response of Sox2/3 expressing cells to spinal cord injury and their function in the regenerative process. We found that cells expressing Sox2 and/or Sox3 are present in the ventricular zone of regenerative animals and decrease in non-regenerative froglets. Bromodeoxyuridine (BrdU) experiments and in vivo time-lapse imaging studies using green fluorescent protein (GFP) expression driven by the Sox3 promoter showed a rapid, transient and massive proliferation of Sox2/3(+) cells in response to injury in the regenerative stages. The in vivo imaging also demonstrated that Sox2/3(+) neural progenitor cells generate neurons in response to injury. In contrast, these cells showed a delayed and very limited response in non-regenerative froglets. Sox2 knockdown and overexpression of a dominant negative form of Sox2 disrupts locomotor and anatomical-histological recovery. We also found that neurogenesis markers increase in response to injury in regenerative but not in non-regenerative animals. We conclude that Sox2 is necessary for spinal cord regeneration and suggest a model whereby spinal cord injury activates proliferation of Sox2/3 expressing cells and their differentiation into neurons, a mechanism that is lost in non-regenerative froglets. (C) 2015 Elsevier Inc. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | MUNOZ-VIDELA, ROSANA DEL VALLE | Mujer |
Pontificia Universidad Católica de Chile - Chile
|
| 2 | Edwards-Faret, Gabriela | Mujer |
Pontificia Universidad Católica de Chile - Chile
|
| 3 | MORENO-CONCHA, MAURICIO RAFAEL | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 4 | Zuniga, Nikole | Mujer |
Pontificia Universidad Católica de Chile - Chile
|
| 5 | Cline, Hollis | Hombre |
Scripps Res Inst - Estados Unidos
Scripps Research Institute - Estados Unidos |
| 6 | PENAILILLO-LAZO, JOHANY FREDDY | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| National Institutes of Health |
| International Centre for Genetic Engineering and Biotechnology |
| ICGEB |
| CARE Chile UC-Centro de Envejecimiento y Regeneracion |
| NIH Office of the Director |
| MINREB |
| National Eye Institute |
| Gastos Operacionales |
| FONDECYT "Iniciacion" |
| CONICYT "Insercion en la Academia" |
| US National Institutes of Health (National Eye Institute) |
| Hahn Family Foundation |
| Agradecimiento |
|---|
| Special thanks to Dasfne Lee-Liu, Fernando Faunes, Emilio Mendez and German Reig for critical reading of the our manuscript and to Natalia Sanchez for her dedication and effort into learning how to electroporate Xenopus. This work was funded by research grants from: R. Munoz: CONICYT "Insercion en la Academia" No 79090027 and FONDECYT "Iniciacion" No 11110006; G. Edwards-Faret: CONICYT PhD fellow and Gastos Operacionales No 21110043; M. Moreno: FONDECYT "Iniciacion" No 11100348; H. T. Cline: the US National Institutes of Health (National Eye Institute: EY011261) and an endowment from the Hahn Family Foundation and J. Larrain: FONDECYT No 1141162, MINREB RC120003, CARE Chile UC-Centro de Envejecimiento y Regeneracion PFB 12/2007 and ICGEB (CRP/CHI-13-01). |
| Special thanks to DasfneLee-Liu, Fernand o Faunes, Emilio Méndez and GermánReig for critical reading of the ourmanuscript and to Natalia Sánchez for her dedication and effort in to learning how to electroporate Xenopus. This work was funded by research grants from: R. Muñoz: CONICYT “Inserciónenla Academia” N179090027 and FONDECYT ”Iniciación” N111110006; G. Edwards-Faret:CONICYT PhD fellow and Gastos Operacionales N121110043; M. Moreno: FONDECYT ”Iniciación” N111100348; H.T. Cline: the US National Institutes of Health (National Eye Institute: EY011261) and an endowment from the Hahn Family Foundation and J. Larraín: FONDECYTN11141162, MINREB RC120003, CARE Chile UC-Centrode Envejecimientoy Regeneración PFB12/2007 and ICGEB (CRP/CHI-13-01) |