Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1109/MIC.2015.22 | ||||
| Año | 2016 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Discovering user intentions behind Web search queries is key to improving user experience. Usually, this task is seen as a classification problem, in which a sample of annotated user query intentions are provided to a supervised machine learning algorithm or classifier that learns from these examples and then can classify unseen user queries. This article proposes a new approach based on an ensemble of classifiers. The method combines syntactic and semantic features so as to effectively detect user intentions. Different setting experiments show the promise of this linguistically motivated ensembling approach, by reducing the ranking variance of single classifiers across user intentions.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | FIGUEROA-AMENABAR, ALEJANDRO GASTON | Hombre |
Universidad Diego Portales - Chile
Universidad Nacional Andrés Bello - Chile |
| 2 | ATKINSON-ABUTRIDY, JOHN ANTHONY | Hombre |
Universidad de Concepción - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| FONDECYT (Chile) |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| Agradecimiento |
|---|
| This research was partially supported by FONDECYT (Chile) research project 11130094 ("Bridging the Gap between Askers and Answers in Community Question Answering Services") granted to Alejandro Figueroa, and by FONDECYT (Chile) research project 1130035 ("An Evolutionary Computation Approach to Natural language Chunking for Biological Text Mining Applications") granted to John Atkinson. |
| This research was partially supported by FONDECYT (Chile) research project 11130094 |