Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S00211-015-0727-4 | ||||
| Año | 2016 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
One particular strength of the boundary element method is that it allows for a high-order pointwise approximation of the solution of the related partial differential equation via the representation formula. However, the high-order convergence and hence accuracy usually suffers from singularities of the Cauchy data. We propose two adaptive mesh-refining algorithms and prove their quasi-optimal convergence behavior with respect to an a posteriori computable bound for the point error in the representation formula. Numerical examples for the weakly-singular integral equations for the 2D and 3D Laplacian underline our theoretical findings.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Feischl, Michael | Hombre |
Vienna Univ Technol - Austria
Technische Universität Wien - Austria |
| 2 | Gantner, Gregor | Hombre |
Vienna Univ Technol - Austria
Technische Universität Wien - Austria |
| 3 | Haberl, Alexander | Hombre |
Vienna Univ Technol - Austria
Technische Universität Wien - Austria |
| 4 | Praetorius, D. | Hombre |
Vienna Univ Technol - Austria
Technische Universität Wien - Austria |
| 5 | Fuhrer, Thomas | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| Austrian Science Fund (FWF) |
| Austrian Science Fund |
| Fondo Nacional de Desarrollo CientÃfico, Tecnológico y de Innovación Tecnológica |
| FWF doctoral school Dissipation and Dispersion in Nonlinear PDEs |
| CONICYT project Preconditioned linear solvers for nonconforming boundary elements |
| Agradecimiento |
|---|
| The authors acknowledge support through the Austrian Science Fund (FWF) under Grant P27005 Optimal adaptivity for BEM and FEM-BEM coupling. MF and DP acknowledge the support of the FWF doctoral school Dissipation and Dispersion in Nonlinear PDEs, funded under Grant W1245. The research of TF is supported by the CONICYT project Preconditioned linear solvers for nonconforming boundary elements, funded under Grant FONDECYT 3150012. |
| The authors acknowledge support through the Austrian Science Fund (FWF) under Grant P27005 Optimal adaptivity for BEM and FEM-BEM coupling. MF and DP acknowledge the support of the FWF doctoral school Dissipation and Dispersion in Nonlinear PDEs, funded under Grant W1245. The research of TF is supported by the CONICYT project Preconditioned linear solvers for nonconforming boundary elements, funded under Grant FONDECYT 3150012. |