Muestra la distribución de disciplinas para esta publicación.
Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.
| Indexado |
|
||||
| DOI | |||||
| Año | 2015 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
A scenery is a coloring xi of the integers. Let {S-t}(t >= 0) be a recurrent random walk on the integers. Observing the scenery xi along the path of this random walk, one sees the color chi(t) := xi(S-t) at time t. The scenery reconstruction problem is concerned with recovering the scenery xi, given only the sequence of observations chi := (chi(t))(t >= 0). The scenery reconstruction methods presented to date require the random walk to have bounded increments. Here, we present a new approach for random walks with unbounded increments which works when the tail of the increment distribution decays exponentially fast enough and the scenery has five colors.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Hart, A. | - |
Universidad de Chile - Chile
|
| 2 | Machado, F. | - |
UNIV SAO PAULO - Brasil
Universidade de Sao Paulo - USP - Brasil Universidade de São Paulo - Brasil |
| 3 | Matzinger, H. | - |
Georgia Inst Technol - Estados Unidos
Georgia Institute of Technology - Estados Unidos |
| Fuente |
|---|
| FAPESP |
| Center for Mathematical Modeling (CMM) Basal CONICYT Program |
| Millennium Nucleus in Information and Randomness in Bielefeld |
| MSI in Bielefeld |
| Agradecimiento |
|---|
| AH and HM would like to thank the Millennium Nucleus in Information and Randomness P04-069-F, MSI, as well as SFB701 in Bielefeld for supporting this work. In addition, All acknowledges support of the Center for Mathematical Modeling (CMM) Basal CONICYT Program PFB 03. HM would like to also thank FAPESP for supporting his visit to the IME-USP during which time an important part of this article was written. |