Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1088/0951-7715/29/5/1596 | ||||
| Año | 2016 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study analytic germs in one variable with a parabolic fixed point at the origin, over an ultrametric ground field of positive characteristic. It is conjectured that for such a germ the origin is isolated as a periodic point. Our main result is an affirmative solution of this conjecture in the case of a generic germ with a prescribed multiplier. The genericity condition is explicit: the power series is minimally ramified, i.e. the degree of the first nonlinear term of each of its iterates is as small as possible. Our main technical result is a computation of the first significant terms of a minimally ramified power series. From this we obtain a lower bound for the norm of nonzero periodic points, from which we deduce our main result. As a by-product we give a new and self-contained proof of a characterization of minimally ramified power series in terms of the iterative residue.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Lindahl, Karl-Olof | Hombre |
Linnaeus Univ - Suecia
Linnaeus University, Växjö - Suecia |
| 2 | RIVERA-LETELIER, JUAN EDUARDO | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| Fuente |
|---|
| Royal Swedish Academy of Sciences |
| FONDECYT grant, Chile |
| Swedish Research and Education in Mathematics Foundation SVeFUM |