Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JVOLGEORES.2016.02.006 | ||||
| Año | 2016 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Automatic pattern recognition applied to seismic signals from volcanoes may assist seismic monitoring by reducing the workload of analysts, allowing them to focus on more challenging activities, such as producing reports, implementing models, and understanding volcanic behaviour. In a previous work, we proposed a structure for automatic classification of seismic events in Llaima volcano, one of the most active volcanoes in the Southern Andes, located in the Araucania Region of Chile. A database of events taken from three monitoring stations on the volcano was used to create a classification structure, independent of which station provided the signal. The database included three types of volcanic events: tremor, long period, and volcano-tectonic and a contrast group which contains other types of seismic signals. In the present work, we maintain the same classification scheme, but we consider separately the stations information in order to assess whether the complementary information provided by different stations improves the performance of the classifier in recognising seismic patterns. This paper proposes two strategies for combining the information from the stations: i) combining the features extracted from the signals from each station and ii) combining the classifiers of each station. In the first case, the features extracted from the signals from each station are combined forming the input for a single classification structure. In the second, a decision stage combines the results of the classifiers for each station to give a unique output. The results confirm that the station-dependent strategies that combine the features and the classifiers from several stations improves the classification performance, and that the combination of the features provides the best performance. The results show an average improvement of 9% in the classification accuracy when compared with the station-independent method. (C) 2016 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | CURILEM-SALDIAS, GLORIA MILLARAY | Mujer |
Universidad de La Frontera - Chile
|
| 2 | HUENUPAN-QUINAN, FERNANDO FABIAN | Hombre |
Universidad de La Frontera - Chile
|
| 3 | Beltran, Daniel | Hombre |
Universidad de La Frontera - Chile
|
| 4 | SAN MARTIN-SALAS, CESAR ENRIQUE | Hombre |
Universidad de La Frontera - Chile
|
| 5 | Fuentealba, Gustavo | Hombre |
Universidad de La Frontera - Chile
|
| 6 | FRANCO-MARIN, LUIS ENRIQUE | Hombre |
Observatorio Vulcanológico Andes del Sur - Chile
Observatorio Volcanológico de Los Andes del Sur - Chile Observ Vulcanol Andes Sur - Chile |
| 7 | CARDONA-IDARRAGA, CARLOS EDUARDO | Hombre |
Observatorio Vulcanológico Andes del Sur - Chile
Observatorio Volcanológico de Los Andes del Sur - Chile Observ Vulcanol Andes Sur - Chile |
| 8 | ACUÑA-LEIVA, GONZALO PEDRO | Hombre |
Universidad de Santiago de Chile - Chile
|
| 9 | CHACON-PACHECO, MAX LEONARDO | Hombre |
Universidad de Santiago de Chile - Chile
|
| 10 | Salman Khan, Muhammad | - |
Univ Engn & Technol - Pakistán
University of Engineering and Technology, Peshawar - Pakistán |
| 11 | Yoma, Nestor Becerra | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| Universidad de La Frontera |
| CONICYT-FONDEF |
| Project STIC-AMSUD |
| project CONICYT-PIA ANILLO ACT |
| Direccion de Investigacion at the Universidad de La Frontera |
| CONICYT-FONDEF IDeA |
| Agradecimiento |
|---|
| The authors would like to thank DIUFRO10-0020 project supported by the Direccion de Investigacion at the Universidad de La Frontera, project CONICYT-PIA ANILLO ACT 1120 and CONICYT-FONDEF IDeA CA13I10273for financing the present work. Also many thanks to the support of the Project STIC-AmSud 15STIC-06 and to OVDAS, who provided the data and geological knowledge to perform the simulations and analyse the results. |
| The authors would like to thank DIUFRO10-0020 project supported by the Dirección de Investigación at the Universidad de La Frontera , project CONICYT-PIA ANILLO ACT 1120 and CONICYT-FONDEF IDeA CA13I10273 for financing the present work. Also many thanks to the support of the Project STIC-AmSud 15STIC-06 and to OVDAS, who provided the data and geological knowledge to perform the simulations and analyse the results. |