Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Monotone waves for non-monotone and non-local monostable reaction-diffusion equations
Indexado
WoS WOS:000376419000013
Scopus SCOPUS_ID:84964341648
DOI 10.1016/J.JDE.2016.03.039
Año 2016
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We propose a new approach for proving existence of monotone wavefronts in non-monotone and non local monostable diffusive equations. This allows to extend recent results established for the particular case of equations with local delayed reaction. In addition, we demonstrate the uniqueness (modulo translations) of obtained monotone wavefront within the class of all monotone wavefronts (such a kind of conditional uniqueness was recently established for the non-local KPP-Fisher equation by Fang and Zhao). Moreover, we show that if delayed reaction is local then each monotone wavefront is unique (modulo translations) within the class of all non-constant traveling waves. Our approach is based on the construction of suitable fundamental solutions for linear integral-differential equations. We consider two alternative scenarios: in the first one, the fundamental solution is negative (typically holds for the Mackey-Glass diffusive equations) while in the second one, the fundamental solution is non-negative (typically holds for the KPP-Fisher diffusive equations). (C) 2016 Elsevier Inc. All rights reserved.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Trofimchuk, Elena Mujer Natl Tech Univ - Ucrania
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” - Ucrania
2 PINTO-CONTRERAS, MANUEL ENRIQUE Hombre Universidad de Chile - Chile
3 Trofimchuk, S. Hombre Universidad de Talca - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 30.77 %
Citas No-identificadas: 69.23 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 30.77 %
Citas No-identificadas: 69.23 %

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
FONDECYT (Chile)
Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We are very grateful to the anonymous referee whose valuable comments helped us to significantly improve the first version of the manuscript. In particular, on the basis of the referees' indications, we considered a 'dual' approach requiring construction of non-negative fundamental solutions (see the last subsection of the introduction and Section 6). We also express our appreciation to Professor Rafael Ortega whose insightful suggestions helped to improve the original version of the paper. In fact, Subsection 2.2 is due to these suggestions. The authors are also indebted to Professor Andrew Bakan for useful discussion on distribution of zeros of entire functions and for pointing out the reference [25]. Especially we would like to acknowledge FONDECYT (Chile), project 1110309 for supporting the research stay of Dr. R. Ortega at the University of Talca. This work was also supported by FONDECYT (Chile), projects 1120709 (E. Trofimchuk and M. Pinto) and 1150480 (S. Trofimchuk).
We are very grateful to the anonymous referee whose valuable comments helped us to significantly improve the first version of the manuscript. In particular, on the basis of the referees' indications, we considered a ‘dual’ approach requiring construction of non-negative fundamental solutions (see the last subsection of the introduction and Section 6 ). We also express our appreciation to Professor Rafael Ortega whose insightful suggestions helped to improve the original version of the paper. In fact, Subsection 2.2 is due to these suggestions. The authors are also indebted to Professor Andrew Bakan for useful discussion on distribution of zeros of entire functions and for pointing out the reference [25] . Especially we would like to acknowledge FONDECYT (Chile), project 1110309 for supporting the research stay of Dr. R. Ortega at the University of Talca. This work was also supported by FONDECYT (Chile), projects 1120709 (E. Trofimchuk and M. Pinto) and 1150480 (S. Trofimchuk).

Muestra la fuente de financiamiento declarada en la publicación.