Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



NEW DEVELOPMENTS ON THE COUPLING OF MIXED-FEM AND BEM FOR THE THREE-DIMENSIONAL EXTERIOR STOKES PROBLEM
Indexado
WoS WOS:000376450900007
Scopus SCOPUS_ID:84969921603
DOI
Año 2016
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In this manuscript we consider the three dimensional exterior Stokes problem and study the solvability of the corresponding continuous and discrete formulations that arise from the coupling of a dual-mixed variational formulation (in which the velocity, the pressure and the stress are the original main unknowns) with the boundary integral equation method. The present work is an extended and completed version of the analysis and results provided in our previous paper [ZAMM Z. Angew. Math. Mech. 93 (2013), no. 6-7, 437-445]. More precisely, after employing the incompressibility condition to eliminate the pressure, we consider the resulting velocity-stress-vorticity approach with different kind of boundary conditions on an annular bounded domain, and couple the underlying equations with either one or two boundary integral equations arising from the application of the usual and normal traces to the Green representation formula in the exterior unbounded region. As a result, we obtain saddle point operator equations, which are then analyzed by the well-known Babuska-Brezzi theory. We prove the well-posedness of the continuous formulations, identifying previously the space of solutions of the associated homogeneous problem, and specify explicit hypotheses to be satisfied by the finite element and boundary element subspaces in order to guarantee the stability of the respective Galerkin schemes. In particular, following a similar analysis given recently for the Laplacian, we are able to extend the classical Johnson & Nedelec procedure to the present case, without assuming any restrictive smoothness requirement on the coupling boundary, but only Lipschitz-continuity. In addition, and differently from known approaches for the elasticity problem, we are also able to extend the Costabel & Han coupling procedure to the 3D Stokes problem by providing a direct proof of the required coerciveness property, that is without argueing by contradiction, and by using the natural norm of each space instead of mesh-dependent norms. Finally, we briefly describe concrete examples of discrete spaces satisfying the aforementioned hypotheses.

Disciplinas de Investigación



WOS
Mathematics
Mathematics, Applied
Scopus
Numerical Analysis
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 GATICA-PEREZ, GABRIEL NIBALDO Hombre Universidad de Concepción - Chile
2 Hsiao, George C. Hombre Univ Delaware - Estados Unidos
University of Delaware - Estados Unidos
3 Meddahi, Salim Hombre Univ Oviedo - España
Universidad de Oviedo - España
4 Sayas, Francisco-Javier Hombre Univ Delaware - Estados Unidos
University of Delaware - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad de Concepción
CONICYT-Chile
Universidad de Chile
National Science Foundation
Comisión Nacional de Investigación Científica y Tecnológica
ANANUM
NSF
Project Anillo
Universidad de Concepci?n
Centro de Investigacion en Ingenieria Matematica (CI2MA), Universidad de Concepcion
Centro de Investigación en Ingeniería Matemática
Centro de Investigaci?n en Ingenier?a Matem?tica
Ministery of Education of Spain
CONICYT-Chile through BASAL project CMM

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, and project Anillo ACT1118 (ANANUM); by Centro de Investigacion en Ingenieria Matematica (CI<SUP>2</SUP>MA), Universidad de Concepcion; by the Ministery of Education of Spain through the Project MTM2007-65088; and by NSF grant DMS-1216356.
This research was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, and project Anillo ACT1118 (ANANUM); by Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción; by the Ministery of Education of Spain through the Project MTM2007-65088; and by NSF grant DMS-1216356.

Muestra la fuente de financiamiento declarada en la publicación.